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Abstract

The three lectures will discuss known results and open problems for the nu-
merical approximation of optimal control problems by a time discretization.

1. Problems with final state constraints

(a) Optimality conditions, shooting function

(b) Order of approximation when using Runge-Kutta schemes

(c) Refinement and logarithmic penalty

2. Problems with running control and state constraints

(a) Control constraints

(b) Mixed control and state constraints

(c) First-order state constraints

3. Discussion of some open problems

(a) High order state constraints

(b) Singular arcs

(c) Integral equations
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Abstract

Nonlinear optimization has grown to a key technology in many areas of ap-
plication. At the latest since the discretisation of optimal control problems
with ODEs, DAEs or PDEs, large and sparse problems are in the focus of
interest. For this reason special techniques are implemented in the new non-
linear optimization solver WORHP which is capable of solving problems with
more than 1.000.000.000 variables and constraints.

In case of disturbances or perturbations in the system data one often is
not able to calculate the optimal solution in advance. Hence in a real pro-
cess, the possibility of data disturbances force recomputing the problem to
preserve stability and optimality, at least approximately.

For this we consider parametric nonlinear programming problems involv-
ing a parameter p ∈ P ⊂ IRNp . The optimization variable is denoted by
z ∈ IRNz . The parametric NLP–problem with equality and inequality con-
straints is given by

(1)NLP(p)


min
z

F (z, p),

subject to Gi(z, p) = 0, i = 1, . . . , Ne,

Gi(z, p) ≤ 0, i = Ne + 1, . . . , Nc.

For a fixed reference or nominal parameter p0 ∈ P , we will study the
differential properties of the optimal solutions to the perturbed problems
NLP(p) in a neighbourhood of the nominal parameter p0. This post op-
timality analysis leads to an explicit formulae for the so called sensitivity
differentials

(2)
dz

dp
(p0),



which can be used for real-time approximations of perturbed solutions by
applying its first order Taylor expansion:

(3) z(p) ≈ z0 +
dz

dp
(p0) (p− p0) .

Based on the general idea (3) several different methods are suggested to
calculate higher order approximations of optimal solutions in real-time. The
thechniques will be applied to different numerical challanges:
– near optimal feasible solutions of NLP problems in real-time,
– B-step correction step technique in nonlinear programming,
– sub-optimal solution of optimal control problems in real-time,
– on-line trajectory planning,
– near optimal full nonlinear feedback controller,
– adaptive sub-optimal feedback controller design,
– adaptive sub-optimal observer design.

Theoretical backgrounds will be discussed and numerical results will be
presented for different test cases.
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Abstract

This talk addresses optimal control problems with constant delays in state
or control variables. The dynamic process is subject to mixed control-state
or pure state inequality constraints. Let x ∈ Rn denote the state variable,
u ∈ Rm the control variable d ≥ 0 the state variable delay, and s ≥ 0 the
control variable delay. We consider the following delayed (retarded) control
problem:

Minimize J(x, u) = g(x(tf ) +

∫ tf

0

f0(x(t), x(t− d), u(t), u(t− s)) dt

subject to
ẋ(t) = f(x(t), x(t− d), u(t), u(t− s)), 0 ≤ t ≤ tf ,
x(t) = x0(t) ∀ − d ≤ t ≤ 0, ϕ(x(tf )) = 0,
u(t) = u0(t) ∀ − s ≤ t ≤ 0,
C(x(t), u(t)) ≤ 0 , S(x(t)) ≤ 0 , 0 ≤ t ≤ tf .

The functions have appropriate dimensions and are assumed to be sufficiently
smooth. We sketch the main idea behind numerical methods for solving the
delayed control problem. Using suitable discretization schemes the delayed
problem is transcribed into a large-scale optimization problem which can be
solved by SQP–methods or Interior-Point Methods; cf., the talk by Christof
Büskens. We present Pontryagin type Minimum Principles by using the aug-
mentation technique developed in [2, 1]. The basic proof idea consists in
transforming the delayed control problem into a standard non-delayed opti-
mal control problem by augmenting the state dimension. The adjoint variable
for the delayed problem satisfies an advanced ODE. The multiplier associ-
ated with the state inequality constraint is a measure which under certain
regularity condition is represented by a regular function; cf. [5, 4].



The main focus in this talk is on applications. Part 1 of the talk treats
mixed control-state constraints, in particular pure control constraints. We
discuss the following examples: (1) control (temperature and feeding rate) of
continuously stirred chemical reactors, (2) optimal exploitation of renewable
resources (fish) and non-renewable resources (oil), and (3) optimal investment
and dividend of a firm. Part 2 of the talk focusses on control problems with
pure state constraints. The following examples are provided: (1) an illustrative
academic example, (2) optimal control of the innate immune response, (3)
optimal control of a model of climate change with constraints on temperature
and CO2–concentration.

References

[1] M. Bruns, Optimale Erkundung und Förderung nicht erneuerbarer
Ressourcen als Kontrollproblem mit Retardierungen und reinen Zustands-
beschränkungen, diploma thesis, Universität Münster, Institut für Nu-
merische und Angewandte Mathematik, 2010.

[2] L. Göllmann, D. Kern, H. Maurer, Optimal control problems with
delays in state and control and mixed control-state constraints, Optimal
Control Applications and Methods 30 (2009), pp. 341–365.

[3] A. Greiner, L. Grüne, W. Semmler, Growth and climate change:
Threshhold and multiple equilibria, Dynamic Systems, Economic Growth,
and the Environment (J. Crespo Cuaresma, T. Palokangas and A.
Tarasyev, eds.), Dynamic Modeling and Econometrics in Economics and
Finance, Vol. 12, Springer, Berlin, 2010.

[4] R. F. Hartl, S. P. Sethi, R. G. Vickson A survey of the maximum
principles for optimal control problems with state constraints, SIAM Re-
view, 37, 181–218, 1995.

[5] H. Maurer, On the minimum principle for optimal control problems
with state constraints, Schriftenreihe des Rechenzentrums der Universität
Münster, Report no. 41, Münster, 1979.

[6] J.J. Preuß, Optimale Steuerung eines ökonomischen Modells des Kli-
mawandels, diploma thesis, Universität Münster, Institut für Numerische
und Angewandte Mathematik, 2011.



Numerical schemes for Hamilton-Jacobi
equations: control problems

and differential games
Maurizio Falcone 1 and Hasnaa Zidani2

1 Dipartimento di Matematica, SAPIENZA–Università di Roma
2 Laboratoire de Mathématiques Appliquées, ENSTA ParisTech

Abstract

The course aims to introduce numerical schemes derived by Dynamic Pro-
gramming for control problems and differential games. We will present the
origins of the method and some applications to classical control problems
discussing several topics like accuracy, efficiency and convergence. In the last
part of the course we will also deal with problems with state constraints and
with the approximation of reachable sets.
The outline of the lectures is the following:

Lecture 1
Control problems, Dynamic programming and Hamilton Jacobi equations.
Schemes derived via Dynamic Programming. How to build a scheme. General
properties: monotonicity, consistency, stability, convergence.

Lecture 2
Approximation of some classical control problems. Some a-priori error esti-
mates. Approximations schemes for pursuit-evasion games. Recent develop-
ments and open problems.

Lecture 3
Approximation of reachable sets. Motion planning and minimum time prob-
lems. General control problems with state constraints. Feedback synthesis.
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