Pontraygin's Maximum Principle for some families of PDEs

María Barbero Liñán

(joint work with M. C. Muñoz Lecanda)

Calc. Var. Partial Differential Equations, Vol. 49(3-4), 2014, 1199-1221.

Universidad Carlos III de Madrid-Instituto de Ciencias Matemáticas

10th AIMS, SS ON DYNAMICAL SYSTEMS AND OPTIMAL CONTROL Madrid, July 10, 2014.

Outline

- Motivating example
- Optimal Control Problem
- Pontryagin's Maximum Principle for k-symplectic formalism
- Formalism for OCP governed by implicit partial differential equation

Outline

- Motivating example
- Optimal Control Problem
- Pontryagin's Maximum Principle for k-symplectic formalism
- Formalism for OCP governed by implicit partial differential equation

Rotation of a bipolar rigid molecule

[Boscain, Caponigro, Chambrion, Sigalotti, 2012]

Imagine the following contol PDE:

$$\mathrm{i}\frac{\partial \Psi(t,\theta)}{\partial t} = -\frac{\partial^2 \Psi(t,\theta)}{\partial \theta^2} + u_1(t)\Psi(t,\theta)\cos\theta + u_2(t)\Psi(t,\theta)\sin\theta.$$

where

- u_1 and u_2 are **two control electric fields** taking values in \mathbb{R} ;
- Ψ is an element in a Hilbert space taking values on \mathbb{C} .

Now, add a cost function...for instance:

$$L = \frac{1}{2} \left(u_1^2 + u_2^2 \right) \, .$$

Outline

• Motivating example

Optimal Control Problem

- Pontryagin's Maximum Principle for k-symplectic formalism
- Formalism for OCP governed by implicit partial differential equation

Classical optimal control problem (OCP)

- ightharpoonup A *n*-dimensional manifold Q. ightharpoonup A **control set** $U \subset \mathbb{R}^{I}$.
- ightharpoonup The natural tangent bundle ightharpoonup A **cost function** $G: Q \times U \to \mathbb{R}$. projection $\tau_Q: TQ \to Q$.

Statement 1 (OCP for (Q, U, X, G, I))

Find $(\gamma, u): I \subset \mathbb{R} \to Q \times U$ joining x_0 and x_f in Q such that

1 it is an integral curve of the vector field X defined along the projection $\pi_1 \colon Q \times U \to Q$, i.e.

$$\dot{\gamma}(t) = X(\gamma(t), u(t));$$

② it minimizes the functional $\int_I G(\tilde{\gamma}(t), \tilde{u}(t)) dt$ among all the integral curves $(\tilde{\gamma}, \tilde{u})$ of X on $Q \times U$ joining x_0 and x_f .

Crash course on k-symplectic formalism [Awane, 1992]

The k-tangent bundle of Q, T_k^1Q , is the following Whitney sum:

$$T_k^1 Q = TQ \oplus \stackrel{k}{\cdots} \oplus TQ.$$

The elements of T_k^1Q are k-tuples $(v_{1_q}, \ldots, v_{k_q})$ of vectors in T_qQ , $q \in Q$.

The canonical projection $\tau_{\mathbf{Q}}^{\mathbf{k}} \colon \mathbf{T}_{\mathbf{k}}^{\mathbf{1}} \mathbf{Q} \to \mathbf{Q} \colon \tau_{Q}^{k}(v_{1_{q}}, \dots, v_{k_{q}}) = q.$

Local coordinates for $T_k^1 Q$: (q^i, v_A^i) , A = 1, ..., k, $i = 1, ..., \dim Q$.

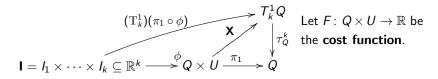
A k-vector field on Q is a section $X: Q \to T_k^1Q$ of τ_Q^k .

The canonical projection $\tau_{\mathbf{Q}}^{\mathbf{k};\mathbf{A}}(\mathbf{v}_{\mathbf{1_q}},\ldots,\mathbf{v}_{\mathbf{k_q}})=\mathbf{v}_{\mathbf{A_q}}$ associates \mathbf{X} with a family of vector fields on $Q:X_A=\tau_Q^{k;A}\circ\mathbf{X}$ $A=1,\ldots,k$.

An integral section of **X** is a map $\sigma: \mathbb{R}^k \to Q$, $\mathbf{t} \to \sigma(\mathbf{t})$ s.t.

$$\mathbf{T}_k^1 \sigma = \left(\frac{\partial \sigma}{\partial t^1}, \dots, \frac{\partial \sigma}{\partial t^k}\right)_{\sigma(\mathbf{t})} = \mathbf{X} \circ \sigma \quad \text{where } \mathbf{t} = (t^1, \dots, t^k).$$

k-symplectic Optimal Control Problem (k-OCP)



Statement 2 (k-OCP for (Q, U, X, F, I))

Find a map $\phi = (\sigma, u) \colon \mathbf{I} \to Q \times U$ passing through q_0 and q_f in Q s. t.

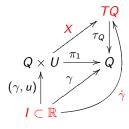
1 it is an integral section of $\mathbf{X} = (X_1, \dots, X_k)$, i.e.

$$\mathrm{T}^1_k(\pi_1\circ\phi)=\mathbf{X}\circ\phi, \quad \mathrm{i.e.} \quad \frac{\partial\sigma^i}{\partial t^A}(\mathbf{t})=X^i_A(\phi(\mathbf{t}))=X^i_A(\sigma(\mathbf{t}),u(\mathbf{t})),$$

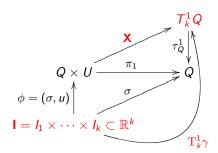
② it minimizes the functional $\int_{I_1 \times \cdots \times I_k} F(\tilde{\phi}(\mathbf{t})) dt^1 \wedge \cdots \wedge dt^k$ among all the integral sections $\tilde{\phi}$ of \mathbf{X} on $Q \times U$ passing through q_0 and q_f .

Comparison between OCP and k-OCP

CLASSICAL OCP FOR ODE



k-symplectic OCP



KEY assumptions to adapt PMP to k-OCP

- 1. The Lie derivative of the cost function with respect to each X_A is zero, that is, $L_{X_A}F = 0$.
- 2. The control functions $u: I \to U$ are locally constants.

NECESSARY TRICK: Add k new variables $(q^{0_1}, \ldots, q^{0_k})$ s. t. for every

$$A=1,\ldots,k$$

$$\frac{\partial q^{0_A}}{\partial t^A}=F, \quad \frac{\partial q^{0_A}}{\partial t^B}=0, \quad \text{ for } B\neq A.$$

Note that q^{0_A} for $B \neq A$ satisfies

$$\frac{\partial q^{0_A}}{\partial t^B} = \int_{t_A^A}^{t^A} \left(\frac{\partial F}{\partial q^i} \frac{\partial q^i}{\partial t^B} + \frac{\partial F}{\partial u^a} \frac{\partial u^a}{\partial t^B} \right) (t^1, \dots, s, \dots, t^k) ds = 0.$$

Note that if both assumptions are satisfied the equations will be immediately satisfied.

Implicit PDE

Extended k-symplectic OCP, k - OCP

- ightharpoonup The extended manifold in k-symplectic formalism: $\widehat{Q} = \mathbb{R}^k \times Q$.
- ightharpoonup The **extended** k-vector field $\widehat{\mathbf{X}}$ on \widehat{Q} is given by $(\widehat{X}_1,\ldots,\widehat{X}_k)$ where

$$\widehat{X}_A = F \delta_A^B \frac{\partial}{\partial q^{0_B}} + X_A = F \frac{\partial}{\partial q^{0_A}} + X_A, \text{ for every } A = 1, \dots, k,$$

where $\delta^{\mathcal{B}}_{\mathcal{A}}$ is the Kronecker's delta and \mathcal{F} is the cost function.

ightharpoonup First integrate $\frac{\partial q^i}{\partial t^A} = X_A^i(q,u)$ and obtain $\phi = (\sigma,u) \colon \mathbf{I} \to Q \times U$. Then,

$$q^{0_A}(\mathbf{t}) = \int_{t_0^A}^{t^A} F(\sigma(\mathbf{t}), u(\mathbf{t})) \mathrm{d}t^A, \quad ext{for every } A = 1, \dots, k.$$

Extended k-symplectic OCP, k - OCP

Statement 3 $(k - OCP \text{ for } (\hat{Q}, U, \hat{X}, F, I))$

Find a map $\widehat{\phi} = (\widehat{\sigma}, u) \colon \mathbf{I} \subset \mathbb{R}^k \to \widehat{Q} \times U$ passing through $(\mathbf{0}, q_0)$ in \widehat{Q} and q_f in Q s.t.

1 it is an integral section of $\hat{\mathbf{X}} = (\hat{X}_1, \dots, \hat{X}_k)$ defined along the projection $\widehat{\pi}_1:\widehat{Q}\times U\to\widehat{Q}$. i.e

$$\frac{\partial \sigma^{0_B}}{\partial t^A}(\mathbf{t}) = F(\phi(\mathbf{t}))\delta_A^B, \quad \frac{\partial \sigma^i}{\partial t^A}(\mathbf{t}) = X_A^i(\phi(\mathbf{t}));$$

2 it minimizes each functional for A = 1, ..., k

$$\mathcal{F}_{\!A}[\phi](\mathbf{t}) = \int_{t_0^A}^{t^A} extstyle Fig(\phi(t^1,\ldots,\overset{ ext{Ath}}{s},\ldots,t^k)ig)\,\mathrm{d} s,$$

among all the integrals sections $\widehat{\phi}$ of $\widehat{\mathbf{X}}$ on $\widehat{Q} \times U$ passing through q_0 and q_f s.t. $\phi = \pi_{Q \times U} \circ \widehat{\phi}$ for $\pi_{Q \times U} \colon \widehat{Q} \times U \to Q \times U$.

Extended k-symplectic OCP, k - OCP

In contrast with classical optimal control theory,

- in *k*-symplectic formalism the extended optimal control problem and the optimal control problem are **not equivalent**.
- However, solutions to the extended problem k OCP are also solutions to the original k-symplectic optimal control problem.

Outline

- Motivating example
- Optimal Control Problem
- Open Principle for k-symplectic formalism
- Formalism for OCP governed by implicit partial differential equation

Hamiltonian formulation of k - OCP

ightharpoonup Consider k Hamiltonian functions H_A : $(T_k^1)^* \widehat{Q} \times U \to \mathbb{R}$:

$$H_A(\widehat{\mathbf{p}},u) = \langle \widehat{p}^A, \widehat{X}_A(\widehat{q},u) \rangle = p_{0_A}^A F(q,u) + \sum_{j=1}^n p_j^A X_A^j(q,u),$$

- ightharpoonup Local coord. $(q^{0_1}, \dots, q^{0_k}, q^1, \dots, q^n, (p_{0_1}^A, \dots, p_{0_k}^A, p_1^A, \dots, p_n^A))$.
- \succ For each control u, the Hamiltonian k-vector field $\widehat{\mathbf{X}}^{*^{\{u\}}}$ must satisfy

$$\mathrm{i}_{\widehat{X}_A^{*\{u\}}}\omega^A=\mathrm{d}H_A^{\{u\}}\quad ext{for every }A=1,\ldots,k,\quad (\star)$$

where $\omega^A = (\pi^A)^*\omega$, projection $\pi^A : (T_k^1)^*\widehat{Q} \to T^*\widehat{Q}$ onto the Ath-copy.

- ightharpoonup Locally $\omega^A = \mathrm{d}q^{0_j} \wedge \mathrm{d}p_{0_i}^A + \mathrm{d}q^i \wedge \mathrm{d}p_i^A$.
- ightharpoonup A solution to Hamilton-De Donder-Weyl eq.

$$\sum_{A=1}^k i_{\widehat{X}_A^{*\{u\}}} \omega^A = \sum_{A=1}^k dH_A^{\{u\}} = d\left(\sum_{A=1}^k H_A^{\{u\}}\right) = d\mathbf{H}.$$

Let us compare (\star) and Hamilton-De Donder-Weyl equations

Hamiltonian k-vector field $\widehat{\mathbf{X}}^* = \left(\widehat{X}_1^*, \dots, \widehat{X}_k^*\right)$ locally expressed as

$$\widehat{X}_{A}^{*} = (Y_{A})^{0_{B}} \frac{\partial}{\partial q^{0_{B}}} + (Y_{A})^{i} \frac{\partial}{\partial q^{i}} + (Y_{A})^{C}_{0_{B}} \frac{\partial}{\partial p^{C}_{0_{B}}} + (Y_{A})^{C}_{j} \frac{\partial}{\partial p^{C}_{i}}.$$

From (*) we obtain

$$(Y_A)^{0_B} = X_A^{0_B} = F \delta_A^B, \quad (Y_A)_{0_B}^A = 0,$$

 $(Y_A)^i = X_A^i, \quad (Y_A)_i^A = -p_{0_A}^A \frac{\partial F}{\partial a^i} - p_j^A \frac{\partial X_A^j}{\partial a^i},$

Note that $(Y_A)_{0_B}^C$, $(Y_A)_i^C$ remain undetermined for $C \neq A$.

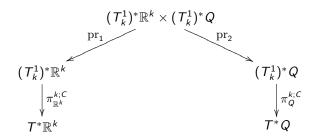
Hamilton-De Donder-Weyl equations lead to

$$(Y_A)^{0_B} = X_A^{0_B} = F \delta_A^B, \quad (Y_A)_{0_B}^A = 0, \quad (Y_A)^i = X_A^i,$$

$$\sum_{A=1}^k (Y_A)_i^A = \sum_{A=1}^k \left(-p_{0_A}^A \frac{\partial F}{\partial q^i} - p_j^A \frac{\partial X_A^j}{\partial q^i} \right).$$

Let us make the Hamiltonian k-vector field $\widehat{\mathbf{X}}^{*^{\{u\}}}$ fully determined

Note that $(T_k^1)^*\widehat{Q} = (T_k^1)^*(\mathbb{R}^k \times Q) \simeq (T_k^1)^*\mathbb{R}^k \times (T_k^1)^*Q$.



The conditions

$$\mathrm{T}\left(\pi_{\mathbb{R}^k}^{k;C}\circ\mathrm{pr}_1\right)\left(\widehat{X}_A^*\right)=0,\quad \mathrm{T}\left(\pi_Q^{k;C}\circ\mathrm{pr}_2\right)\left(\widehat{X}_A^*\right)=0,$$

for every $C \neq A$ imply locally that $(Y_A)_{0B}^C = 0$ and $(Y_A)_j^C = 0$ for $C \neq A$.

Implicit PDE

k-symplectic PMP

Theorem 3 (k-symplectic Pontryagin's Maximum Principle)

If $\widehat{\phi}^* = (\widehat{\sigma}^*, u^*)$: $I_1 \times \cdots \times I_k \to \widehat{Q} \times U$ is a solution of $k - \widehat{OCP}$ such that F satisfies assumptions 1 and 2, then there exists $(\widehat{\beta}, u)$: $I_1 \times \cdots \times I_k \to (T_b^1)^* \widehat{Q} \times U$ along $\widehat{\sigma}^*$ s.t.

- **1** $(\pi^A \circ \widehat{\beta}, u)$ along $\widehat{\sigma}^*$ is a solution of (\star) for each $A = 1, \ldots, k$;
- ② the Hamiltonian H_A : $(T_k^1)^*\widehat{Q} \times U \to \mathbb{R}$ along $\widehat{\phi}^*$ is equal to the supremum of H_A over the controls a.e. ;
- $oldsymbol{3}$ the supremum of the Hamiltonian H_A along $\widehat{\phi}^*$ is constant a.e. ;
- $\widehat{\beta}^{A}(\mathbf{t}) \neq 0 \in T^*_{\widehat{\sigma}^*(\mathbf{t})} \widehat{Q} \text{ for each } \mathbf{t} \in I_1 \times \cdots \times I_k;$
- **6** $\beta_{0_1}^A(\mathbf{t}), \dots, \beta_{0_k}^A(\mathbf{t})$ are constant and $\beta_{0_A}^A$ is non-positive.

Outline

- Motivating example
- Optimal Control Problem
- Pontryagin's Maximum Principle for k-symplectic formalism
- Formalism for OCP governed by implicit partial differential equation

Unified formalism for k-cosymplectic [Rey, Román, Salgado, Vilariño,

2012 to implicit PDEs

Motivation

- $\gg \mathcal{W}$: = $\mathbb{R}^k \times \left(T_k^1 Q \oplus \left(T_k^1\right)^* Q\right)$. Local coordinates (t^B, q^i, v_A^i, p_i^A) .
- $\gg \vartheta^A = (\operatorname{pr}_1)^*(\operatorname{d} t^A)$ and $\Omega_A = (\operatorname{pr}_3)^*(\omega_A)$ for $1 \le A \le k$, where $\operatorname{pr}_1: \mathcal{W} \to \mathbb{R}^k, \ \operatorname{pr}_3: \mathcal{W} \to \left(T_k^1\right)^* Q.$
- ightharpoonup Locally, $\vartheta^A = \mathrm{d}t^A$, $\Omega_A = \mathrm{d}a^i \wedge \mathrm{d}p_i^A$.
- ightharpoonup The coupling function \mathcal{C} on $\mathbb{R}^k \times \left(T_k^1 Q \oplus \left(T_k^1\right)^* Q\right)$:

$$\mathcal{C}(\mathbf{t}, \mathbf{v}_q, \mathbf{p}_q) = \sum_{A=1}^k p_q^A(v_{A_q}) = \sum_{A=1}^k \left(p_i^A v_A^i \right).$$

 \triangleright Given a Lagrangian function \mathbb{L} on $\mathbb{R}^k \times T^1_k Q$, the Hamiltonian **function H** on $\mathbb{R}^k imes \left(T_k^1 Q \oplus \left(T_k^1\right)^* Q\right)$ is defined as follows

$$H = \mathcal{C} - (\operatorname{pr}_1 \times \operatorname{pr}_2)^* \mathbb{L}.$$

Locally, $H(t, q^i, v^i_A, p^A_i) = p^A_i v^i_A - \mathbb{L}(t, q^i, v^i_A)$.

Unified formalism for k-cosymplectic to implicit PDEs

Dynamical problem in the Skinner-Rusk formalism for k-cosymplectic field theories

Find integral sections $\phi \colon \mathbb{R}^k \to \mathcal{W}$ of an integrable k-vector field $\mathbf{Z} = (Z_1, \dots, Z_k)$ on \mathcal{W} s.t.

$$\sum_{A=1}^{k} i_{Z_A} \Omega_A = dH - \sum_{A=1}^{k} \frac{\partial H}{\partial t^A} \vartheta^A, \quad i_{Z_A} \vartheta^B = \delta^B_A.$$

Unified formalism for k-cosymplectic to implicit PDEs

Definition 4

An **implicit dynamical system** (\mathbb{L}, M) is described by the submanifold

$$M = \{(t^B, q^i, v_A^i) \in \mathbb{R}^k \times (T_k^1)Q \mid \Psi^{\alpha}(t^B, q^i, v_A^i) = 0, \ 1 \leq \alpha \leq s\},\$$

where $\mathrm{d}\Psi^1\wedge\cdots\wedge\mathrm{d}\Psi^s\neq 0$, and a Lagrangian function $\mathbb{L}\in\mathcal{C}^\infty(M)$.

Using the natural embedding $\iota^M\colon M\hookrightarrow \mathbb{R}^k\times T^1_kQ$, on the k-symplectic implicit bundle $\mathcal{W}^M=M\times_Q(T^1_k)^*Q$ we have:

$$\mathcal{C}^{\mathcal{W}^M} = (i^M)^*(\mathcal{C}), \quad \vartheta^A_{\mathcal{W}^M} = (i^M)^*(\vartheta^A), \quad \Omega^{\mathcal{W}^M}_A = (i^M)^*(\Omega_A).$$

Problem of describing the dynamics of (\mathbb{L}, M)

$$\sum_{A=1}^{k} \mathrm{i}_{Z_A} \Omega_A^{\mathcal{W}^M} = \mathrm{d} H_{\mathcal{W}^M} - \sum_{A=1}^{k} \frac{\partial H_{\mathcal{W}^M}}{\partial t^A} \vartheta_{\mathcal{W}^M}^A, \quad \mathrm{i}_{Z_A} \mathrm{d} t^B = \delta_A^B.$$

Implicit PDE

Unified formalism for OCP governed by an implicit PDE

 \triangleright Let C be the control bundle with natural coordinates (t^A, q^i, u^a) .

$$\mathit{M}_{\mathit{C}} = \{(\mathit{t}^{\mathit{B}}, \mathit{u}^{\mathit{a}}, \mathit{q}^{i}, \mathit{v}_{\mathit{A}}^{i}) \in \mathit{C} \times_{\mathit{Q}} \mathit{T}_{\mathit{k}}^{1} \mathit{Q} \mid \Psi^{\alpha}(\mathit{t}^{\mathit{B}}, \mathit{u}^{\mathit{a}}, \mathit{q}^{i}, \mathit{v}_{\mathit{A}}^{i}) = 0, \ 1 \leq \alpha \leq \mathit{s}\}.$$

- **>** Implicit optimal control problem: (\mathbb{L}, M_C) , where $\mathbb{L} \in C^{\infty}(M_C)$.
- ightharpoonup The dynamics of (\mathbb{L}, M_C) : for a k-vector field \mathbf{Z} on $\mathcal{W}^{M_C} = M_C \times_Q (T_k^1)^*Q$:

$$\sum_{A=1}^{\kappa} i_{Z_A} \left(\Omega_A^{\mathcal{W}^{M_C}} \right) = 0, \quad i_{Z_A} \vartheta_{\mathcal{W}^{M_C}}^B = \delta_A^B,$$

- ightharpoonup Equivalently, there exists a k-vector field ${f Z}$ on $C imes_{{\Bbb R}^k imes Q} {\cal W}$ such that
- (i) **Z** is tangent to \mathcal{W}^{M_C} ;
- (ii) the 1-form $\sum_{A=1}^{k} i_{(Z_A)}(\sigma_{\mathcal{W}}^*(\Omega_A))$ is null on the k-vector fields tangent to \mathcal{W}^{M_C} .

Unified formalism for OCP governed by an implicit PDE

 \succ There exist $\lambda_{\alpha} \in \mathcal{C}^{\infty}(C \times_{\mathbb{R}^k \times Q} \mathcal{W})$, to be determined, s. t. on \mathcal{W}^{M_C}

$$\sum^{k} i_{(Z_{A})}(\sigma_{\mathcal{W}}^{*}(\Omega_{A})) = dH_{\mathcal{W}^{M_{C}}} - \frac{\partial H_{\mathcal{W}^{M_{C}}}}{\partial t^{A}} \vartheta^{A} + \lambda_{\alpha} d\Psi^{\alpha} - \lambda_{\alpha} \frac{\partial \Psi^{\alpha}}{\partial t^{A}} \vartheta^{A}$$

ightharpoonup In coordinates $(t^B, u^a, q^i, v^i_{\scriptscriptstyle A}, p^A_i)$ in $C \times_{\mathbb{R}^k \times Q} \mathcal{W}$, find k vector fields

$$Z_A = (Z_A)_t^B \frac{\partial}{\partial t^B} + (Z_A)^a \frac{\partial}{\partial u^a} + (Z_A)^i \frac{\partial}{\partial q^i} + (Z_A)_B^i \frac{\partial}{\partial v_B^i} + (Y_A)_i^B \frac{\partial}{\partial p_i^B} ,$$

verifying the equation

$$\sum_{A=1}^{k} (Y_A)_i^A = \frac{\partial \mathbb{L}}{\partial q^i} - \lambda_\alpha \frac{\partial \Psi^\alpha}{\partial q^i}, \qquad (Z_A)^i = v_A^i,$$

$$p_i^A = \frac{\partial \mathbb{L}}{\partial v_A^i} - \lambda_\alpha \frac{\partial \Psi^\alpha}{\partial v_A^i}, \qquad 0 = \frac{\partial \mathbb{L}}{\partial u^a} - \lambda_\alpha \frac{\partial \Psi^\alpha}{\partial u^a}.$$

together with the tangency conditions on \mathcal{W}^{M_C}

$$0 = Z_A(\Psi^{\alpha}) = (Z_A)_t^A \frac{\partial \Psi^{\alpha}}{\partial t^A} + (Z_A)^i \frac{\partial \Psi^{\alpha}}{\partial q^i} + (Z_A)^a \frac{\partial \Psi^{\alpha}}{\partial u^a} + (Z_A)_B^i \frac{\partial \Psi^{\alpha}}{\partial v_B^i}$$

Implicit PDE

$$\mathrm{i}rac{\partial \Psi(t, heta)}{\partial t} = \left(-rac{\partial^2 \Psi(t, heta)}{\partial heta^2} + u_1(t)\cos heta\,\Psi(t, heta) + u_2(t)\sin heta\,\Psi(t, heta)
ight),$$

- > 2-symplectic formalism where $t^1 = t$ and $t^2 = \theta$.
- ightharpoonup Rename variables: $q^1 = \text{Re}\Psi$, $q^2 = \text{Im}\Psi$.
- \triangleright Consider a 6-dimensional manifold Q with local coordinates

$$\left(q^1, q^2, q^3 = \frac{\partial q^1}{\partial t}, q^4 = \frac{\partial q^2}{\partial t}, q^5 = \frac{\partial q^1}{\partial \theta}, q^6 = \frac{\partial q^2}{\partial \theta}\right).$$

- ightharpoonup The local coordinates for $C \times_Q T_2^1Q$ are $(t^1, t^2, u^1, u^2, q^i, v_1^i, v_2^i)$.
- ightharpoonup The submanifold M_C of $C \times_Q T_2^1 Q$ is implicitly defined by

$$\begin{array}{rclcrcl} \Psi^1 & = & v_1^1 - q^3, & \Psi^4 & = & v_2^2 - q^6, & \Psi^7 = -q^3 - v_2^6 + u_1 q^2 \cos \theta + u_2 q^2 \sin \theta \,, \\ \Psi^2 & = & v_1^2 - q^4, & \Psi^5 & = & v_2^3 - v_1^5, & \Psi^8 = q^4 - v_2^5 + u_1 q^1 \cos \theta + u_2 q^1 \sin \theta \,. \\ \Psi^3 & = & v_2^3 - q^5, & \Psi^6 & = & v_2^4 - v_2^6 \end{array}$$

Thus,

$$\begin{split} Z_A &= \frac{\partial}{\partial t^A} + v_A^i \frac{\partial}{\partial q^i} + (D_A)_a \frac{\partial}{\partial u_a} + v_A^3 \frac{\partial}{\partial v_1^1} + v_A^4 \frac{\partial}{\partial v_1^2} + v_A^5 \frac{\partial}{\partial v_2^1} + v_A^6 \frac{\partial}{\partial v_2^2} \\ &+ (F_A)_1^5 \left(\frac{\partial}{\partial v_2^3} + \frac{\partial}{\partial v_1^5} \right) + (F_A)_1^6 \left(\frac{\partial}{\partial v_2^4} + \frac{\partial}{\partial v_1^6} \right) \\ &+ \left(v_A^4 + (D_A)_1 q^1 \cos \theta - \delta_2^A u_1 q^1 \sin \theta + v_A^1 u_1 \cos \theta + (D_A)_2 q^1 \sin \theta + \delta_2^A u_2 q^1 \cos \theta \right. \\ &+ v_A^1 u_2 \sin \theta \right) \frac{\partial}{\partial v_2^5} + \left(-v_A^3 + (D_A)_1 q^2 \cos \theta - \delta_2^A u_1 q^2 \sin \theta + v_A^2 u_1 \cos \theta + \right. \\ &+ \left. (D_A)_2 q^2 \sin \theta + \delta_2^A u_2 q^2 \cos \theta + v_A^2 u_2 \sin \theta \right) \frac{\partial}{\partial v_2^6} \\ &+ \left. (F_A)_1^3 \frac{\partial}{\partial v_1^3} + (F_A)_1^4 \frac{\partial}{\partial v_1^4} + (G_A)_i^A \frac{\partial}{\partial p_i^A}, \end{split}$$

where $t^1 = t$, $t^2 = \theta$, $(D_1)_1 = \cos \theta$, $(D_1)_2 = \sin \theta$ and $(D_2)_1 \sin \theta - (D_2)_2 \cos \theta = -p_6^2 q^2 - p_5^2 q^1$, plus some other equations.

Implicit PDE

Future research lines

- To find the way to successfully extend these results to any control system regardless of the nature of the cost function. The main difficulty is to obtain a compatible system of partial differential equations after extending the original control system.
- To apply the constraint algorithm for k-presymplectic Hamiltonian systems will characterize the extremals of optimal control problems governed by PDEs.

