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o Motivating example



Motivation

Rotation of a bipolar rigid molecule

[Boscain, Caponigro, Chambrion, Sigalotti, 2012]

Imagine the following contol PDE:

OV(t,0)  9Pw(t,0)
ot T o

+ u1(t) W(t,0) cosf + ux(t)VW(t,0) sinb.

where

e u; and u, are two control electric fields taking values in R;

e U is an element in a Hilbert space taking values on C.

Now, add a cost function...for instance:




® Optimal Control Problem



ocp

Classical optimal control problem (OCP)

> A n-dimensional manifold Q. > A control set U C R/,

> The natural tangent bundle > A cost function G: Q x U — R.
projection 7o: TQ — Q.

Statement 1 (OCP for (Q, U, X,G,!) )
Find (v,u): | C R — Q x U joining xo and x¢ in Q such that

@ it is an integral curve of the vector field X defined along the
projection m1: Q@ X U — Q, i.e.

@ it minimizes the functional [, G(5(t), i(t))dt among all the integral
curves (5, 1) of X on Q x U joining xo and xf.




ocp

Crash course on k-symplectic formalism [Awane, 1992]

The k-tangent bundle of Q, T,}Q, is the following Whitney sum:

TIQ = TQa -~ & TQ.

The elements of T,}Q are k-tuples (vi, ..., v,) of vectors in T,Q,
qge€ Q.
The canonical projection 7§&: TiQ — Q: 7§(va,, ..., vi,) = 4.

Local coordinates for T}Q: (¢',vy), A=1,... .k, i=1,....dim Q.
A k-vector field on Q is a section X: Q — T}Q of 7§.
The canonical projection Té;A(qu, ..+, Vk,) = Va, associates X with

a family of vector fields on Q : Xy = Tg;A oX A=1,... k.

An integral section of X is a map 0: RF — Q, t — o(t) s.t.

0 0
’1‘,{0—(0,.‘..0) —Xoo wheret=(t!,... t).
o(t)



k-symplectic Optimal Control Problem (k-OCP)

(m100) Let F: @ x U — R be
TQ the cost function.

l=h x- xlkCRkHQXUHQ

Statement 2 (k-OCP for (Q, U, X, F,I))
Find a map ¢ = (o, u): | = Q x U passing through go and gr in @ s. t.

@ it is an integral section of X = (Xi,..., Xk), i.e

Thimod)=Xod, ie ooi(t) = Xi(@(t) = Xi(o(t), u(v)),

© it minimizes the functional [, . F(p(t))dtr A --- A dtk
among all the integral sections ¢ of X on Q x U passing through qo

and gr.
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ocp

Comparison between OCP and k-OCP

CrassicaAL OCP ror ODE

k-sYMPLECTIC OCP




ocp

KEY assumptions to adapt PMP to k-OCP

1. The Lie derivative of the cost function with respect to each Xy is
zero, that is, Lx,F = 0.
2. The control functions u: | — U are locally constants.

NECESSARY TRICK: Add k new variables (¢%,...,q%) s. t. for every
A=1,.. k
aqO/\ (‘)qO/\
= F. =0, for B#A.
ath 0 OB or 7

Note that g% for B # A satisfies

8q0A A OF 8qi OF Ou? . )
- - th s, t5)ds = 0.
0t® /r (Oq’ 9t 0w atB)( oSy, t)ds =0

Note that if both assumptions are satisfied the equations will be
immediately satisfied.
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ocp

Extended k-symplectic OCP, k— OoCP

> The extended manifold in k-symplectic formalism: CA? =Rk x Q.

> The extended k-vector field X on Q is given by ()A<1, e ,)AQ() where

+ Xa, forevery A=1,... k,

s 5 0 )
XA:FOEOq—OBJrXA F)O

where 6§ is the Kronecker's delta and F is the cost function.

3A = Xi(q,u) and obtain ¢ = (o,u): 1 - Q x U

> First integrate ot

Then,

A

t
g (t) = / F(o(t), u(t))dt?, forevery A=1,... k.
&'
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ocp

Extended k-symplectic OCP, k— OoCP

Statement 3 (k—/O\CP for (a U, X, F, 1)

Find a map ¢ = (G,u): 1 CRK = @ x U passing through (0,q0) in Q
and gr in Q s.t.
@ it is an integral section of X = ()A(l7 .. ,)AQ() defined along the
projection 71: @ x U — Q, e

D08 O ]
D) = FO)E, 9T (t) = Xi(o(0);

® it minimizes each functional for A=1,... k

]:A[(/')](t):/ F(o(th, ..., 755" ... t4) ds,

A
.to

among all the integrals sections gg of X on @ x U passing through
Go and gr s.t. ¢ = mexy o ¢ for moxu: Q x U — Q x U.




ocp

Extended k-symplectic OCP, k— OoCP

In contrast with classical optimal control theory,

® in k-symplectic formalism the extended optimal control problem and
the optimal control problem are not equivalent.

e However, solutions to the extended problem k — OCP are also

solutions to the original k-symplectic optimal control problem.
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® Pontryagin’s Maximum Principle for k-symplectic
formalism



kPMP

Hamiltonian formulation of kf—O\CP

> Consider k Hamiltonian functions Ha: (T,})*@ x U —=R:

Ha(p, u) = (*, Xa(d, u)) = pg, F(q. u) +Z A XA(q. u),

j=1

> Local coord. (¢%,...,¢%, ¢ ....,q", (P8, ....P4 . Pt ... P})).
> For each control u, the Hamiltonian k-vector field X" must satisfy

1A*<}w 7(1H{} forevery A=1,...,k, (%)

where w? = (74)*w, projection 7A: (T,})*a — T*Q onto the Ath-copy.
> Locally w” = dq% A dpé)_ +dq' A dp?.

> A solution to (x) is a solution to Hamilton-De Donder-Weyl eq.

k k k
Sigwmwt =Y dH =d (Z Hj\“}> —dH.
A
A=1

A=1 A=1
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kPMP

Let us compare (x) and Hamilton-De Donder-Weyl equations

Hamiltonian k-vector field X* = ()A(l*, . ,)A(,f) locally expressed as
~ .0 0 0
X = (Ya)e —— + (Ya) = + (Ya)5, —= + (Ya)f —=.
A= (Ya) g +(Ya) aq +(Ya)o, 0 + (Ya); 90
From (%) we obtain
(Ya)s = Xgo =Fd3, (Ya)g, = O
- : OF X
(Ya) = Xi (YAt = =Pl o —p 4

~Po, aq’ Pj aq' )
Note that (Y4)G,, (Ya){ remain undetermined for C # A.

Hamilton-De Donder-Weyl equations lead to

(YA)OB = XAOB = F(SE? (YA)éB =0, (YA)i = XAi\v

k k i
OF  ,0X]
E Ya)A = E —pf —— —pA A
( A)l i ( Po, aq/ P;j aql >

A=1
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kPMP

Let us make the the Hamiltonian k-vector field X*'*' fully determined
Note that (T2)*Q = (TH)*(R* x Q) ~ (T2)*R¥ x (T})*Q.

(TR < (Tg)Q

pr, pT,
(Te) R (Te) @
T*R* T™Q

> The conditions

T (Wékc o pr1> ()A(A*) =0, T (Wgc o pr2> ()A(A*> =0,

for every C # A imply locally that (Ya)§z = 0 and (Ya)¢ =0 for
C+A



kPMP

k-symplectic PMP

Theorem 3 (k-symplectic Pontryagin’s Maximum Principle)

If o* = (G5 u*): h X X I — Q x U is a solution of k — OCP such
that F satisfies assumptions 1 and 2, then there exists
(Byu): ly X --x I = (TH*Q x U along 6* s.t.

© (7 o B, u) along G* is a solution of (x) for each A=1,..., k;

® the Hamiltonian Hp: (Tkl)*a) x U — R along <$* is equal to the
supremum of Ha over the controls a.e. ;

® the supremum of the Hamiltonian H, along <$* is constant a.e. ;
@ BA(t) #£0€ T yQ foreacht € h x -+« x I,

@ B4(t),..., B () are constant and 3¢ is non-positive.
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o Formalism for OCP governed by implicit partial
differential equation



Implicit PDE

Unified formalism for k-cosymplectic [Rey, Romdn, Salgado, Vilarino,

2012] to implicit PDEs

>W: =Rk x <T,<1Q e (Tkl)* Q). Local coordinates (t2, ¢, vi, p?).
> 94 = (pr;)*(dt?) and Q4 = (pr3)*(wa) for 1 < A < k, where

pry: W — RK pry: W — (T,})* Q.

> Locally, 94 = dt?A, Qa =dq’' Adp?.

> The coupling function C on R x (T,}Q o (TH" Q):

k

C(t, vq: Pq) qu va,) Z (piAVD'

A-1
> Given a Lagrangian function L on R* x T}Q, the Hamiltonian
function H on R¥ x (Tle D (T,})* Q) is defined as follows

H = C — (pr; x prp)*L.

Locally, H(t, q’, vj\, p,-A) = p;AVA — L(t, q’, vj\).



Implicit PDE

Unified formalism for k-cosymplectic to implicit PDEs

Dynamical problem in the Skinner-Rusk formalism for

k-cosymplectic field theories

Find integral sections ¢: RX — W of an integrable k-vector field
Z=(24,...,Z) on W s.t.

k . OH
SNizQu=dH -y Wﬁ“, iz, 08 = 65.
A=1 A=1

21 /28



Implicit PDE

Unified formalism for k-cosymplectic to implicit PDEs

Definition 4

An implicit dynamical system (L, M) is described by the submanifold
M= {(t?,q',v}) e R* x (THQ | w*(t5,q',v}) =0, 1 < a < s},

where dW! A .- A dWS £ 0, and a Lagrangian function I € C*°(M).

Using the natural embedding (M: M — Rk x T1Q, on the k-symplectic
implicit bundle WM = M x o (T})*Q we have:

V" = (M) (C), 0w = ((M)(0%), QW = (M) ().

Problem of describing the dynamics of (L, M)




Implicit PDE

Unified formalism for OCP governed by an implicit PDE
> Let C be the control bundle with natural coordinates (4, ¢, u?).

Mc = {(tB, v, q, v,’;\) € Cxgq Tle | \U“(tB, w2, q, v,’;\) =0, 1<a<s}

> Implicit optimal control problem: (L, M¢), where L € C>°(Mc¢).

> The dynamics of (IL, M¢): for a k-vector field Z on
WMC = MC XQ (T;)*Q

k
: whMc . 9B B
ZlZA (QA > =0, iz, UWMC =04,
A=1

> Equivalently, there exists a k-vector field Z on C Xgk, o VW such that
(i) Z is tangent to WMe;

(ii) the 1-form 2221 i(z,) (03 (R24)) is null on the k-vector fields
tangent to WMe,



Unified formalism for OCP governed by an implicit PDE

> There exist A\, € C%°(C xgixg W), to be determined, s. t. on WMc
K

i y oH
Z i(z,) (oW (Q4)) = dHyyme — 81;\2‘%
A=l

ove

I 4+ A dVU® — Ay ——

’L9A

> In coordinates (t2,u?,q', v}, p) in C xgiyo W, find k vector fields

Za= (28 -2+ (za L 1 2 L vz (Pl

t 9tB ou? aq’ ovj i opB "’
verifying the equation
k
L ove . .
YA = = —\,—, Za) = vh,
Az::l( ) ¢ oq (Za)' = vy
a_ OL 0w 0_8JL7 ove
Pi = ovh “ovy’ - Ou? Y oua”
together with the tangency conditions on WMc
ove OV ove A
0=2Za(V*) = (Za)d 55 +(Za) = + (Za)* 55 + (Za)p——
A(V”) = (Za): 5iA + (Za) ¢ + (Za) 50 +( A)B@V’,3



Implicit PDE

Back to the example

ot 06?

> 2-symplectic formalism where t! =t and t> = 6.

YD) (VD) L (costv(e ) + i(e)sinouie )

> Rename variables: ¢! = ReV, g¢%=1ImV.

> Consider a 6-dimensional manifold @ with local coordinates

oqt 0q? oqt 0q?
1 2 3 _ L 6 _
(q7q7q = ataq ot aoaq 90

> The local coordinates for C xq T3 Q are (t!, 2, ut, u?,q', vi, vi).

> The submanifold M¢c of C xq T2 Q is implicitly defined by

vl o= yl—g® v = v2—¢% VT =—¢*— v+ wqg?cost + wgisinb,
U2 o= V—gt W o= v, W =g*— ]+ uqgtcosf + wgtsing.
N



Implicit PDE

Back to the example

Thus,

B B O . 50 .0 | s
geA + Vagg +(Da)ag - Vag T Vag s +vig

5 0 0 6 3] 0
+ (Fa)3 (aT; + an) + (Fa); <aT; + an)

+ (vf\ + (Da)1q" cos O — 85 u1q" sin 0 + viun cos O + (Da)2g* sin 0 + 62 uag cos 0

0 6 O

Za = + VATV%

+viussin 9) % + (—vf\ + (DA)1q2 cos @ — 5§‘u1q2 sin 0 + vauy cos O+
>
+ (Da)2g? sin 0 + 63 u2g® cos O + vaua sin «9) iﬁ
ov;
0 A O
F Fa)i Ga)' =%
+ A)1a 5 + (Fa) o + (Ga); oph”

where t! = t, t2 =0, (Dy); = cosf, (Dy)> = sinf and
(Dy)1sin@ — (Dy)2cos = —p2q® — p2q*, plus some other equations.



Future research lines

e To find the way to successfully extend these results to any control
system regardless of the nature of the cost function. The main
difficulty is to obtain a compatible system of partial differential
equations after extending the original control system.

e To apply the constraint algorithm for k-presymplectic Hamiltonian
systems will characterize the extremals of optimal control problems
governed by PDEs.



Thank you!!!!
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