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Optimal Control Problem

state x ∈ Rn, control u ∈ Rm

(I will assume all the data is smooth)

Dynamics and Boundary conditions

ẋ(t) = f (t, x(t), u(t)), a.e. t ∈ [0, 1] (f : R× Rn × Rm → Rn)

(x(0), x(1)) ∈ E (E ⊂ Rn × Rn)

Control and State constraints

u ∈ U(t) a.e. t ∈ [0, 1] (U(t) ⊂ Rm)

b(t, x(t), u(t)) ∈ B(t) (b1 ≤ 0, b2 = 0,B(t) = (−∞, 0]× {0})
h(t, x(t)) ≤ 0 (h : R× Rn → R)

Minimize

g(x(0), x(1))
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What kind of Necessary Conditions should we expect?

Suppose (x∗, u∗) is a solution of
min{g(x(0, x(1)) :
ẋ = f (t, x , u), u ∈ U(t)
b(t, x , u) ∈ B(t),
h(t, x) ≤ 0
(x(0), x(1)) ∈ E .}

⇒

min g(x(0), x(1)) + IE (x(0), x(1))+∫ 1
0 I(−∞,0](h(t, x(t)))dt+∫ 1
0 IB(t)(b(t, x(t), u(t))dt

IA(x) = 0 if x ∈ A, and +∞ if x /∈ A

We expect existence of a multiplier q(.) :
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−ṗ(t) = Hx(t, x∗, q, ν, u∗) and . . .

Andrea Boccia Necessary Conditions for OCP with state/control constraints



5/21

What kind of Necessary Conditions should we expect?

Suppose (x∗, u∗) is a solution of
min{g(x(0, x(1)) :
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PMP (Multipliers)

Suppose (x∗, u∗) is a solution of
min{g(x(0, x(1)) :
ẋ = f (t, x , u), u ∈ U(t)
b(t, x , u) ∈ B(t),
h(t, x) ≤ 0
(x(0), x(1)) ∈ E .}

Then (under appropriete assumptions (later)) there exist:

Adjoint (costate) function p(.) ∈W 1,1([0, 1],Rn)

Multipliers associeted to the constraints

ν ∈ L1(0, 1) : ν ∈ NB(t)(b(x∗, u∗))⇒ ν(t) = 0 if b(x∗, u∗) ∈
◦
B(t))

µ ∈ C+(0, 1) : supp µ ⊆ {t : h(t, x∗(t)) = 0}

Boundary conditions (Normality) λ0 = {0, 1}
Andrea Boccia Necessary Conditions for OCP with state/control constraints
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PMP (Necessary Conditions)

Define: q(t) :=

{
p(t) +

∫
[0,t)∇xh(x∗) dµ t ∈ [0, 1)

p(t) +
∫
[0,1]∇xh(x∗) dµ t = 1

H([t], u) := q(t) · f (x∗, u)− ν(t) · b(x∗, u)

Nontriviality

(p, µ, λ0) 6= (0, 0, 0)

Boundary Conditions

(p(0),−q(1)) ∈ λ0∇g(x∗(0), x∗(1)) + NE (x∗(0), x∗(1))

Adjoint Equation

−ṗ(t) = ∇xH([t], u∗(t))

Maximum Principle

max
u∈U(t)

H([t], u) = H([t], u∗(t))
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Regularity Conditions

Classical hypotheses under which Necessary Conditions are derived
include: 1

Maximum Rank Condition (Hestenes, 1966)

∃ c > 0 :
A = bu(t, x , u) =⇒ det ATA ≥ c

b(t, x , u) = 0 ⇒ u = φ(t, x)

Generalized Mangasarian-Fromowitz condition (Clarke-De Pinho,
2010)

∀ ν ∈ NB(t)(b(t, x , u)) and γ ∈ NU(t)(u) ∃ k(.) ∈ L1:

‖ν‖ ≤ k(t)‖ν · bu(t, x , u) + γ‖

1It is sufficient to check the conditions for (t, x , u) near the optimal
solution, and for which constraints are active.
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Schwarzkopf Conditions

Necessary conditions for OCPs with mixed constraints can be
derived under the following hypotheses:

Covering Hypothesis and Convexity

1 b(t, x∗(t), u∗(t)) + δB ⊆ b(t, x∗(t),U(t))

2 {(f (t, x , u), b(t, x , u)) : u ∈ U(t)} is convex

Schwarzkopf, “Relaxed control problems with state equality
constraints”, 1975.
Vinter, De Pinho, “A maximum principle for OCP with mixed
constraints”, 2001.
Clarke, Ledyaev, De Pinho, “An extention to the Schwarzkopf
multiplier rule in Optimal Control”, 2011.

Is there any relation with standard hypotheses?

(OCP)1
Schw. cond.

7→ (OCP)2
known cond.

7→ N.C.
for (OCP)2

7→ N.C.
for (OCP)1
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Schwarzkopf Conditions

Necessary conditions for OCPs with mixed constraints can be
derived under the following hypotheses:

Covering Hypothesis and Convexity

1 b(t, x∗(t), u∗(t)) + δB ⊆ b(t, x∗(t),U(t))

2 {(f (t, x , u), b(t, x , u)) : u ∈ U(t)} is convex

(OCP)1
Schw. cond.

7→ (OCP)2
known cond.

7→ N.C.
for (OCP)2

7→ N.C.
for (OCP)1

Such approach leads to a very complicated analysis and does not
seem to give any relation between Schwarzkopf condition and
standard conditions. Moreover

b(t, x , u) = a0(t, x) + a1(t, x)u ⇒ u∗(t) ∈ int U(t)

No reference to B(t); Unusual convexity assumption (Necessary?).
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A Linear mixed constraint

Assume u ∈ U compact and B(t) closed, convex set. Then

Covering Hypothesis

b(t, x∗(t), u∗(t)) + δB ⊆ b(t, x∗(t),U(t))

b(t, x , u) = a0(t, x) + a1(t, x)u

Constraint qualification

∀ ν ∈ NB(t)(b(t, x , u)) and γ ∈ NU(u) ∃ k(.) ∈ L1:

‖ν‖ ≤ k(t)‖ν · bu(t, x , u) + γ‖
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Outline

1 Necessary Conditions

2 Mixed Constraints
Classical Hypotheses
Schwarzkopf Conditions

3 Pure State Constraints
Differential Inclusions
Measures
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Differential Inclusions

min
{

g(x(0, x(1)) :

ẋ = f (t, x , u), u ∈ U(t) and b(t, x , u) ∈ B(t),

h(t, x) ≤ 0, (x(0), x(1)) ∈ E .
}

Mixed and control constraints can be absorbed in the dynamic:

F (t, x) = {f (t, x , u) : u ∈ U(t), b(t, x , u) ∈ B(t)}

Bettiol, Boccia, Vinter, “Stratified Necessary Conditions for
Differential Inclusions with State Constraints”, 2013.

Regularity conditions for b(.), such as the Mangasarian-Fromowitz
condition, can be translated into regularity conditions for F (.).
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Differential Inclusions

min
{

g(x(0, x(1)) :

ẋ(t) ∈ F (t, x)

h(t, x) ≤ 0, (x(0), x(1)) ∈ E .
}

Precisely, we require F (.) to be Lipschitz, or, more in general,
pseudo-Lipschitz

F (t, x) ∩ R(t) ⊂ F (t, x ′) + k(t)|x − x ′|

where k(.) ∈ L1. What is R(.)?
R(t) = Rn, εB, ↑ Rn, as long as F (t, x) ∩ R(t) 6= ∅.
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Differential Inclusions

min
{

g(x(0, x(1)) :

ẋ(t) ∈ F (t, x)

h(t, x) ≤ 0, (x(0), x(1)) ∈ E .
}

Assume that the usual constraint qualification holds, namely

∀ ν ∈ NB(t)(b(t, x , u)) and γ ∈ NU(u) ∃ k(.) ∈ L1:

‖ν‖ ≤ k(t)‖ν · bu(t, x , u) + γ‖.

Then,
(α, β) ∈ NGrF (t,.)(x , ẋ)⇒ ‖α‖ ≤ k(t)‖β‖

⇔

F (t, x) ∩ R(t) ⊂ F (t, x ′) + k(t)|x − x ′|
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Necessary Conditions

Let x∗ be a minimum for

min
{

g(x(0, x(1)) : ẋ(t) = f (t, x , u), u ∈ U(t)

b(t, x , u) ∈ B(t), h(t, x) ≤ 0, (x(0), x(1)) ∈ E .
}

∃ a multiplier (p, µ, λ0) 6= (0, 0, 0):

(p(0),−q(1)) ∈ λ0∇g(x∗(0), x∗(1)) + NE (x∗(0), x∗(1))

−ṗ(t) = ∇xH([t], u∗(t))

max
u∈U(t)

H([t], u) = H([t], u∗(t))

Define: q(t) :=

{
p(t) +

∫
[0,t)∇xh(x∗) dµ t ∈ [0, 1)

p(t) +
∫
[0,1]∇xh(x∗) dµ t = 1

H([t], u) := q(t) · f (x∗, u)− ν(t) · b(x∗, u)
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Is there any class of problems for which the measure µ is
“nice”?

Say, µ absolutely continuous w.r.t. the Lebesgue measure:

q(t) = p(t) +

∫
[0,t)
∇xh(τ, x∗) ξ(τ)dτ

For some L1 function ξ(.).
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SEIR Model

Neilan, Lenhart, “An Introduction to Optimal Control with an
Application in Disease Modeling”

Kornienko, MdR de Pinho, “On first order state constrained
optimal control problems”

Minimize
∫ T

0
(AI (t) + u2(t))dt

subject to

Ṡ(t) = bN(t)− dS(t)− cS(t)I (t)− u(t)S(t),

Ė(t) = cS(t)I (t)− (e + d)E(t),

İ (t) = eE(t)− (g + a + d)I (t),

Ṅ(t) = (b − d)N(t)− aI (t),
S(t) ≤ Smax ,
S(t)u(t) ≤ V0

u ∈ [0, 1]
(S(0),E(0), I (0),N(0)) = (S0,E0, I0,N0)

x = (S ,E , I ,N) ⇒ ẋ(t) = f0(x) + f1(x)u
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Necessary Conditions



Minimize

∫ T

0
(AI (t) + u2(t))dt

subject to
ẋ(t) = f0(x) + f1(x)u
u ∈ [0, 1]
h(x) = (1, 0, 0, 0) · (S ,E , I ,R) ≤ S0
b(t, x , u) = (1, 0, 0, 0) · (S ,E , I ,R)u ≤ V0

x(0) = x0

λ = 1;

q(t) = p(t) +
∫
[0,t)∇h(x∗) dµ;

q(T ) = 0;

u∗(t) = max
{

0,min{1, −qS (t)S∗(t)2 }
}
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An Example (From I. Kornienko, MdR de Pinho, MTNS
2014)
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Concluding Remarks

We extended current available Theory on necessary conditions
by allowing a combination of mixed constraints and pure state
constraints.

We showed that mixed constraint problems can always be
reformulated as differential inclusion (mixed-constraint-free)
problem. Open question: when state constraints are present,
can we identify a class of problems for which NC are “nice”?

We showed that some relations exist between classical
hypotheses on the mixed constraint. Open question:

u 7→ b(t, x , u) linear (convex) → b(t, x ,U) convex
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Thank you

Andrea Boccia: a.boccia@imperial.ac.uk
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