L^{1}-minimization in space mechanics: Old and new

AIMS

Madrid, July 2014

Jean-Baptiste Caillau
Univ. Bourgogne \& CNRS
Zheng Chen
Univ. Paris-Sud \& CNRS
Yacine Chitour
Univ. Paris-Sud \& CNRS

\mathbf{L}^{1}-minimization

Sparsity of solutions. For fixed final time t_{f}, consider

$$
\begin{gathered}
\ddot{q}(t)=-\nabla V(q(t))+u(t), \quad|u(t)| \leq 1, \\
\int_{0}^{t_{f}}|u(t)| \mathrm{d} t \rightarrow \min ,
\end{gathered}
$$

where q and u are valued in \mathbf{R}^{m} and

$$
|u|:=|u|_{2}=\sqrt{u_{1}^{2}+\cdots+u_{m}^{2}} .
$$

Pontrjagin maximum principle indicates the possibility of zero control ("coast") arcs as
$H\left(q, v=\dot{q}, u, p_{q}, p_{v}\right)=p^{0}|u|+p_{q} v+p_{v}(-\nabla V(q)+u) \leq p_{q} v-p_{v} \nabla V(q)+|u|\left(\left|p_{v}\right|+p^{0}\right)$.
Singular arcs. In constrat with finite dimensional optimization, there may also exist singular arcs along which $|u| \in(0,1)$.

\mathbf{L}^{1}-minimization

Variable mass mechanical systems. Consider

$$
\begin{gathered}
\ddot{q}(t)=-\nabla V(q(t))+\frac{u(t)}{M(t)}, \quad|u(t)| \leq 1, \\
\dot{M}(t)=-|u(t)| .
\end{gathered}
$$

Minimization of consumption. Given boundary conditions and fixed t_{f}, equivalence of Lagrange

$$
\|u\|_{1}:=\int_{0}^{t_{f}} \sqrt{u_{1}^{2}(t)+\cdots+u_{m}^{2}(t)} \mathrm{d} t \rightarrow \min
$$

and Mayer optimal control problems:

$$
M\left(t_{f}\right) \rightarrow \max
$$

L'1-minimization

Controllability properties. With $x:=(q, \dot{q}) \in \mathbf{R}^{n}, n=2 m$,

$$
\begin{gathered}
\dot{x}(t)=1 \cdot F_{0}(x(t))+\frac{1}{M(t)} \sum_{i=1}^{m} u_{i}(t) F_{i}(x(t)), \\
\dot{M}(t)=-|u(t)|
\end{gathered}
$$

where

$$
F_{0}(q, \dot{q}):=\dot{q} \frac{\partial}{\partial q}-\nabla V(q) \frac{\partial}{\partial \dot{q}}, \quad F_{i}(q, \dot{q}):=\frac{\partial}{\partial \dot{q}_{i}}, \quad i=1, \ldots, m .
$$

Lemma. The Lie algebra generated by $F_{0}, F_{1}, \ldots, F_{m}$ is everywhere of maximal rank.
\Longrightarrow Controllability provided additional assumptions on the drift F_{0}.

Circular restricted three body problem

Continuous vs. impulsive thrust. American and Russian studies of low thrust missions (as opposed to chemical boosts) since the 60's.

Controlled 2/3 BP. For mass ratio $\mu \in[0,1]$, consider

$$
\begin{gathered}
\ddot{q}(t)=-\nabla_{q} V_{\mu}(t, q(t))+\frac{\varepsilon u(t)}{M(t)}, \quad|u(t)| \leq 1, \\
\dot{M}(t)=-|u(t)|
\end{gathered}
$$

where $\left(q \in \mathbf{R}^{2} \simeq \mathbf{C}\right)$

$$
V_{\mu}(t, q):=-\frac{1-\mu}{\left|q+\mu e^{i t}\right|}-\frac{\mu}{\left|q-(1-\mu) e^{i t}\right|} .
$$

Remark. 2BP controlled problem for $\mu=0$ (or 1): $V_{0}(t, q)=: V(q)$.
\Longrightarrow Min. consumption: L^{1}-minimization.

Circular restricted three body problem

Transfer between periodic orbits, low thrust.

- Deep Space 1 (NASA, 1998-2001)
- SMART1 (ESA, 2003-2006)
- Hayabusa (JAXA, 2003-2010)
- Dawn (NASA, 2007-2015)
- GOCE (ESA, 2009-2013)
- LISA Pathfinder (ESA \& NASA, 2015-)
- BepiColombo (ESA \& JAXA, 2016-)
\rightarrow Project with CNES (4-body model, averaging), 2013-2016.

Old (and less old) references

[1] Robbins, H. M. Optimality of intermediate-thrust arcs of rocket trajectories. AIAA J. 6 (1965), no. 3, 1094-1098.
"Lawden's spiral (...) is non optimal. Although optimal intermediate-thrust arcs exist, they seem to be without practical significance because of the restrictive junction conditions."
[2] Marchal, C. Chattering arcs and chattering controls. J. Optim. Theory Appl. 15 (1975), no. 5, 633-666.
[3] Zelikin, M. I.; Borisov, V. Theory of chattering control. Birkhäuser, 1994.
[4] Gergaud, J.; Haberkorn, T. Homotopy Method for minimum consumption orbit transfer problem. ESAIM Control Optim. and Calc. Var. 12 (2006), no. 2, 294310.

Singularities of the characteristics

Pontrjagin maximum principle. If u is an L^{1}-optimal control, \exists Lipschitz $\left(p, p_{M}\right):\left[0, t_{f}\right] \rightarrow\left(\mathbf{R}^{5}\right)^{*}$ such that a.e.

$$
\begin{aligned}
& \dot{x}(t)=\frac{\partial H}{\partial p}\left(x(t), M(t), u(t), p(t), p_{M}(t)\right), \\
& \dot{M}(t)=\frac{\partial H}{\partial p_{M}}\left(x(t), M(t), u(t), p(t), p_{M}(t)\right), \\
& \dot{p}(t)=-\frac{\partial H}{\partial x}\left(x(t), M(t), u(t), p(t), p_{M}(t)\right), \quad \dot{p_{M}}(t)=-\frac{\partial H}{\partial M}\left(x(t), M(t), u(t), p(t), p_{M}(t)\right)
\end{aligned}
$$

and

$$
H\left(x(t), M(t), u(t), p(t), p_{M}(t)\right)=\max _{|\nu| \leq 1} H\left(x(t), M(t), v, p(t), p_{M}(t)\right)
$$

where $x=(q, v)$ and

$$
H\left(x, M, u, p, p_{M}\right):=p_{q} v+p_{v}\left(-\nabla V(q)+\frac{u}{M}\right)-p_{M}|u| .
$$

Singularities of the characteristics

Reduction to a single-input system. Set $\rho:=|u|$,

$$
H=p_{q} v-p_{v}\left(\nabla V(q)+\frac{u}{M}\right)-p_{M}|u| \leq H_{0}+\rho H_{1}
$$

with

$$
H_{0}\left(x, M, p, p_{M}\right):=p_{q} v-p_{v} \nabla V(q), \quad H_{1}\left(x, M, p, p_{M}\right):=\frac{\sqrt{p_{v_{1}}^{2}+p_{v_{2}}^{2}}}{M}-p_{M} .
$$

Along the optimum,

$$
H=\max _{\rho \in[0,1]} H_{0}+\rho H_{1}=H_{0}+\left(H_{1}\right)_{+}
$$

\Longrightarrow Two singularities: $p_{v}=(0,0)$ and $H_{1}=0$ (codimension 2 and 1 , resp.)
\Longrightarrow Information encoded by the Poisson brackets of H_{0} and H_{1} (not a vector field lift).

Singularities of the characteristics

π-singularities.
Lemma. For a fixed final time t_{f} larger than the minimum time, there are no abnormal extremals.

Prop. Zeros of p_{v} are isolated and correspond to a discontinuity in the control angle (jump of angle $\pi: u \rightarrow-u$).

Sketch of proof. Normality + maximum rank of $\left\{F_{1}, F_{2},\left[F_{0}, F_{1}\right],\left[F_{0}, F_{2}\right]\right\}$.
Cor. Functions p_{v} and H_{1} vanish simultaneously at most at one instant. Accordingly, (i) $\rho=|u|$ is continuous and equal to 1 through any π-singularity, (ii) no π-singularity along singular arcs.

Sketch of proof. $\dot{H}_{1}(\bar{t} \pm)= \pm \frac{\left|\dot{p}_{v}\right|}{M}(\bar{t}), \dot{p}_{v}(\bar{t}) \neq 0$ (touch point).

Singularities of the characteristics

Regular switches.

Lemma. At points s.t. $H_{01} \neq 0, \rho$ switches from 0 to 1 (or conversely).
Sketch of proof. $\dot{H}_{1}=\left\{H_{0}+\rho H_{1}, H_{1}\right\}=\left\{H_{0}, H_{1}\right\}$.

Singular arcs.

Prop. (Robbins'1965) Singular arcs are of order at least two. In particular, order two arcs are defined whenever $p_{v} q \neq 0$.

Sketch of proof. Along a singular arc, $H_{1}=H_{01}=0$. Moreover,

$$
H_{101}=\frac{H_{01}}{M}, \quad H_{1001}=\frac{H_{01}}{M^{2}},
$$

H_{10001} is equal to $p_{v} q$ up to some positive constant, and

$$
H_{00001}+\rho H_{10001}=0 .
$$

Singularities of the characteristics

Fuller.

Lemma. No (non-saturating) junction of bang and singular arcs is possible.
\Longrightarrow Fuller phenomenon ("chattering"): Accumulation of switchings points.

Fuller, A. T. Absolute optimality of nonlinear control systems with integral-square error criterion. J. Electr. Control 17 (1964), 301-317.

Second order conditions

Fields of extremals. (i) Consider (for fixed t_{f})

$$
\begin{gathered}
\dot{x}(t)=f(x(t), u(t)), \quad x(t) \in X, \quad u(t) \in U, \\
\int_{0}^{t_{f}} f^{0}(x(t), u(t)) \mathrm{d} t \rightarrow \min
\end{gathered}
$$

and assume that the maximized normal Hamiltonian is well defined and smooth:

$$
h(x, p):=\max _{u \in U} H(x, u, p)=\max _{u \in U}-f^{0}(x, u)+p f(x, u) .
$$

(ii) Let $\mathscr{L} \subset \mathbf{R} \times T^{*} X$ be a submanifold on which $h \mathrm{~d} t-p \mathrm{~d} x$ is exact.

Theorem. Assume that, for each $t \in\left[0, t_{f}\right], \Pi: \mathscr{L}_{t} \rightarrow X,(x, p) \mapsto x$, is a diffeo.; then, any trajectory of \vec{h} on $T^{*} X$ projects onto a trajectory in X optimal w.r.t. all admissible trajectories with same endpoints.

Remark. Works locally by restricting X to some open nbd of a given trajectory (\mathscr{C}^{0}-local optimality).

Second order conditions

Bang arcs. Excluding π-singularities, the absence of conjugate point along the whole arc is sufficient to devise locally a field of extremals (Sarychev'1982). In terms of Jacobi field $\delta z=(\delta x, \delta p)$,

$$
\delta \dot{z}(t)=\vec{h}^{\prime}(z(t)) \delta z(t), \quad \delta x(0)=\delta x\left(t_{c}\right)=0 .
$$

Singular arcs. Similar test, well known for order 1 singular arcs (BonnardKupka'1993): Consider

$$
h_{s}(x, p):=H\left(x, u_{s}(x, p), p\right), \quad u_{s}(x, p):=-\frac{H_{001}}{H_{101}}(x, p)
$$

with $H_{101}>0$ ("hyperbolic case") and appropriate additional constraints for the linearized system. Second order singular: See Dixon \& Breakwell (1971).

Remark. Generalized Legendre condition:

$$
H_{10001}=\left.(-1)^{q} \frac{\partial}{\partial \rho} \frac{\mathrm{~d}^{2 q}}{\mathrm{~d} t^{2 q}} \frac{\partial H}{\partial \rho}\right|_{q=2}<0, \quad \rho_{s}:=-\frac{H_{00001}}{H_{10001}} .
$$

Second order conditions

Bang-bang arcs. Schättler's approach for broken extremals: Include regular switchings t_{i} by
(i) conjugate point test on each $\left(t_{i}, t_{i+1}\right)$
(ii) transversality condition on switchings in (t, x)-space

Update formula for Jacobi fields includes a jump at regular switchings:

$$
\begin{gathered}
\delta z\left(t_{i}+\right)=\left(I+\Delta_{i}\right) \delta z\left(t_{i}-\right), \quad \Delta_{i}=\frac{\overrightarrow{H_{1}} H_{1}^{\prime}}{H_{01}}\left(z\left(t_{i}\right)\right) . \\
\left(H_{1}=\left(H_{0}+H_{1}\right)-H_{0}\right)
\end{gathered}
$$

Remark. Optimality check not reducible to a finite dimensional problem: Conjugate time at or between switching times.

Second order conditions

Conjugacy as fold singularity.

Agrachev, A. A.; Sachkov, Y. L. (2004)

Broken fold

Schättler, H.; Noble, J. (2002)

Second order conditions

Bang-bang arcs. Numerical results (2BP orbit transfer, 3D).

Second order conditions

Bang-bang arcs. Numerical results (2BP orbit transfer, 3D).

Second order conditions

Bang-bang arcs. Numerical results (2BP orbit transfer, 3D).

Second order conditions

Chattering.

Prop. (Zelikin'1994) Singular arcs are \mathscr{C}^{0}-locally optimal in short time provided $p_{\nu} q<0$ (inward pointing control). The local synthesis is given by the concatenation of chattering entering the singular arc, singular arc, chattering exiting the singular arc.

Perspectives.

$-\mathrm{L}^{1}$-minimization ($\operatorname{dim} \infty$): Zero and singular arcs

- Conjugate points at or between switching points
- Result extends to time dependent potential $V(t, q)$ (3BP, see Zelikin \& Borisov'2003)
- Chattering: Physical significance? Complete optimality analysis? Approximation (BV regularization, Ghezzi'2014)?

References

[1] Differential pathfollowing for regular optimal control problems. Optim. Methods Softw. 27 (2012), no. 2, 177-196. apo.enseeiht.fr/hampath (with Cots, O.; Gergaud, J.)
[2] Minimum time control of the restricted three-body problem. SIAM J. Control Optim. 50 (2012), no. 6, 3178-3202 (with Daoud, B.)
[3] Minimum fuel control of the planar circular restricted three-body problem. Celestial Mech. Dynam. Astronom. 114 (2012), no. 1, 137-150 (with Daoud, B.; Gergaud, J.)

