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Introduction

We consider an infinite horizon problem with state constraints I :

(P) inf {/Ooo e MO(yi(t), u(t))dt

u:[0,400) — A measurable
yld(t)e K Vt>0

where \ > 0 is fixed and y/(-) is a trajectory of the control system

y="f(y,u) ae.t>0
y(0)=xe Kk

We are mainly concerned with a characterization of the Value Function of
(P) as the bilateral solution to a Hamilton-Jacobi-Bellman (HJB) equation

A9 + H(x, V¥(x)) = 0.
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Introduction

Basic properties of the Value Function

(e}

Y(x) ;= inf e Me(yH(t), u(t))dt, Vx e K,
uel(x) Jo

where A(x) = {u: [0, +00) — A measurable | y/(t) € K Vt>0}.

Known facts (Standard hypothesis + Convexity of dynamics)
If A > Ao for some \g >0 :

e Vx € K, Ju* € A(x) a minimizer provided ¥(x) € R.

@ ¥: K — RU{+o0} is lower semicontinuous.

@ ¥ is the unique function that satisfies the DPP.

@ ¥ is a supersolution of the HJB equation on K.

@ ¥ is a subsolution of the HJB equation on int(X).
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Introduction

More basic properties of the Value Function

o0

I(x) ;= inf e MO(y (1), u(t))dt, Vx € K.
ueA(x) Jo

Known facts (Comparison principle)

e if p is a supersolution of the HJB equation on /C then

I(x) < p(x), VxeK.
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Introduction

More basic properties of the Value Function

o0

I(x) ;= inf e MO(y (1), u(t))dt, Vx € K.
ueA(x) Jo

Known facts (Comparison principle)

e if p is a supersolution of the HJB equation on /C then
I(x) < p(x), VxeK.
@ if ¢ is a subsolution of the HJB equation on int(KC) then

9(x) > p(x), Vxe K <+— May not be truel.
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Feasible Neighboring Trajectories Approach

Soner, Frankowska-Vinter, Clarke-Stern, among many others

When it does hold 7?7
@ V(+) is continuous up to the boundary.
@ Interior approximation of trajectories.

@ Some monotonicity properties along trajectories.
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Feasible Neighboring Trajectories Approach

Soner, Frankowska-Vinter, Clarke-Stern, among many others

When it does hold 7?7
@ V(+) is continuous up to the boundary.
@ Interior approximation of trajectories.

@ Some monotonicity properties along trajectories.

What do we need to achieve one of these?? x 2
%> Tameness properties : K = int(K). :
Y Pointing Conditions B

(Inward or Outward). -
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Example

G <

y2(0) = v,
ue A:=[-1,1]
ya(t), y2(t) € [-r,1]

< ((D | (é) > : >

Note that :
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More complicated state constraints

AN
~
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Dynamic Programming Principle
Recall
I(x) =

infucago {Joy e U2(E), u(e)dt + e TO(A(T)) . VT 20 }
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Dynamic Programming Principle

Recall

I(x) = infuengo { Jy € MU (E), u(®)de+ e TO((T) |, VT = 0.

In particular, the Value Function is strongly increasing :

Definition

A function ¢ : K — R U {400} is called strongly increasing provided
dom A C dom ¢ and Vx € K, Yu € A(x)

() < e Nplyt(e) + [ e U, uls)ds Ve 0,
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Dynamic Programming Principle

Recall

I(x) = infuengo { Jy € MU (E), u(®)de+ e TO((T) |, VT = 0.

In particular, the Value Function is strongly increasing :

Definition

A function ¢ : K — R U {400} is called strongly increasing provided
dom A C dom ¢ and Vx € K, Vu € A(x)

() < e Nplyt(e) + [ e U, uls)ds Ve 0,

Under suitable assumptions :

@ is strongly increasing = ¥(x) > p(x), ¥x € K.
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Standing Hypothesis (SH)

@ K is closed and A C R™ is nonempty and compact.
o /RN x A—[0,+00) and f : RN x A — RN are continuous and
Lipschitz w.r.t. the state :

‘f(X,U)—f(y,U)’ _
3L > 0 such that (x, 1) — Uy, u)| < L|x —y]| Vue A

@ The cost has linear growth w.r.t. the state :
Jc > O such that 4(x,u) <c(1+1x]) Vue A

@ We assume convexity of the augmented dynamics :
f(x,u)
e M(l(x,u) +r)

Example J

ue A r>0

X N
rgc(1+yx|)—£(x,u)}= v(t,x) € R x R™.

A convex, f(x,u) = fo(x) + F(x)u and u +— (x, u) convex.
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Strongly Increasing Principle

Characterization of subsolutions

Definition (Subdifferentials)

Let o : RN — R U {400} be a I.s.c. function. A vector ( € RN is called a
viscosity subgradient of ¢ at x € dom ¢ if and only if :

3g € CY(RN) s.t. Vg(x) = ¢ and ¢ — g attains a local minimum at x.

We denote by Oy p(x) the set of all viscosity subgradients of ¢ at x.

Proposition

Suppose that (SH) holds and let ¢ : KK — RU {400} be a |.s.c. function. If
@ Is strongly increasing then

Ap(x) + H(x,¢) <0 Vx € int(K), V¢ € dyp(x).
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Stratifiable sets

Definition
A closed set IC C RN s said to be stratifiable if there exists a locally finite
collection {M; : i € T} of embedded manifolds of RN such that :

o K =Ujcz Mi and M; N M; = whenever i # j.

o M; ﬂ./\7j #+ (), then M; C /WJ and dim(M;) < dim(M;).
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Stratifiable sets

Mg

Ms

My

The class of stratifiable sets on RV is wide, it includes :

@ Semilinear sets — finite union of open polyhedra.

@ Semialgebraic sets — finite union of polynomial manifolds.
C. Hermosilla (INRIA Saclay)

@ Subanalytic sets — locally finite union of analytic manifolds.
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Characterization of subsolutions

Some basic definitions and notation

Assume that K is stratifiable and let {M;} be its strata.
For each stratum M; we define

@ the set of tangent controls as the map A; : M; = A given by
Ai(x) :={ue A | f(x,u) € Tam,(x)}.
o the tangential Hamiltonian as the map H; : M; x RNV — R given by

Hix,¢) = max {—(¢,f(x,u)) — £(x, u)}

ueA;(x)
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Tangent controls

Mg My Mz
Mz M
f(X13X27 U) = (X27 U)
ue[-1,1]
" Mo ' Ao(x) = A
Ai(x)={0} fori=1,...,4
Aj(x)=0for j=5,...,12
M M
M, ~M3 M
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Tangent controls

M,

JA; C A such that

f(x,A) N Ta;(x) = F(x, Ai)
A,'(X) = A,’,

Vi=1,...,4
My

Let Mo = {O}:
Ao(O)={ue A| f(O,u) =0}.
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Characterization of subsolutions (necessity)
Proposition (CH - Zidani)

Suppose that (SH) holds with KC is stratifiable and let ¢ : K — R U {400}
be a |.s.c. function. Assume that

(Ho) A is a Lipschitz set-valued map or has empty images on M.
If ¢ is strongly increasing then for each i € T
(%) Ap(x) + Hi(x,{) <0 Vx € M;, V¢ € dvpi(x),

where ¢;(x) = p(x) if x € M; and +oo otherwise.

Remark

(%) is equivalent to say : Vi € Z, ¥x € M; and Vg € C}(RV) such that
¢ — g attains a local minimum at x relative to M;

Ap(x) + Hi(x,Vg(x)) <0. )
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The converse?

Strong Invariance Principle on int(K)

Ap(x) + Tea}l({—@, f(x,u)) —€(x,u)} <0 Vx € int(K), V¢ € dyp(x).
J

y«(t) € int(K) for every t € (a, b), where 0 < a < b < +00 then

b
p(ye(a) < e Doy (b)) + eA"’/ e M U(y(t), u(t))dt.

a

4

Any admissible trajectory y; defined on [0, T] with y¥(t) € int(K) for
every t € (0, T) satisfies the Strong Increasing Inequality.
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The converse?

Strong Invariance Principle on each stratum

M)+ max {=(C,F(xu)) =l )} SO Vx € My, VG € Dyipi(x).

4

y2(t) € M; for every t € (a, b), where 0 < a < b < +0co then

b
o(2(a)) < e M= (y¥(b)) + & / e U(y2 (1), u(t))dt.

VAN

y2(T) My 2y (T) o
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Suppose that yy(t) € IC, Vt € [0, T] and there exists a partition of [0, T]
T={0=th<ty<...<th<thy1 =T}

so that V/ € {0, ..., n},3IM; with y¥(t) € M;,Vt € (t;, tj11).

Mo

M y(t) v

Whence, VI € {0,...,n} we have

ti41
e(yi(ty) < e M=yt 1)) + M / e MU(yd(t), u(t))dt.

t

Therefore yY satisfies the Strong Increasing Inequality !'!
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ti41
e(yi(ty) < e M=yt 1)) + M / e MU(yd(t), u(t))dt.

t

Therefore yY satisfies the Strong Increasing Inequality !'!

C. Hermosilla (INRIA Saclay) Madrid, July 10th 2014 18 / 26



Suppose that yy(t) € IC, Vt € [0, T] and there exists a partition of [0, T]
T={0=th<ty<...<th<thy1 =T}

so that V/ € {0, ..., n},3IM; with y¥(t) € M;,Vt € (t;, tj11).

NN

t5) Y t4 y(t,g Ml Yy tz

- J

Whence, VI € {0,...,n} we have

ti41
e(yi(ty) < e M=yt 1)) + M / e MU(yd(t), u(t))dt.

t

Therefore yY satisfies the Strong Increasing Inequality !'!
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Suppose that yy(t) € KC, Vt € [0, T] and there is NO partition of [0, T]
T={0=th<ty<...<th<thy1 =T}

so that V/ € {0,..., n}, IM; with yZ(t) € M;,Vt € (t, tj41).

My
LAAN /\ /\
v :

What if the trajectory "chatters" between two or more strata? 7?7
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Controllability assumption

Vi € Z with dom A; 75 (Z), 36;, A; > 0 such that
(H) (RO AM C | RPX), vxeM;, vtelo,d]

s€[0,A;t]
R((-) : reachable set at time t of x — f(x,.A).
Rgt)(-) : reachable set at time t of x — f(x, .4;(x)).
f(x1, x2, u) = (x2, u)
uel-1,1]
- ' Ao(x) = A

Ai(x)={0} fori=1,...,4
Aj(x)=0for j=5,...,12

M; M Mg
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Controllability assumption

Vi € T with dom A; # 0, 34;, A; > 0 such that
() ARONM C | RPK), vxeM;, veelo,d]
SG[O,A,’!‘]

t

R((-) : reachable set at time t of x +— f(x,.A).
()
R:

7(+) : reachable set at time t of x — f(x, A;(x)).

Lemma

Suppose (SH) with K stratifiable. Assume that (Hp) and (Hi) hold.
For any x € K and T > 0 there exists L > 0 such that : Yu € A(x),Ve >0
if y!(b),yi(a) € M; with0 < a< b< T for some i € T then,

a

b
p(r(a) < (e_A(b_"’)w(yx” (b)) + & / e MUy, U)dt> + Le.

provided meas({t € [a, b] | y/(t) & M;}) <e.
v
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Controllability assumption :

Chattering trajectory :

My
LONNAN /\ /\
My z

Approximated trajectory :

y(T) /\ MO
Y My
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Characterization of subsolutions (sufficiency)

Proposition (CH - Zidani)

Suppose that (SH) with IC stratifiable. Assume that (Hy) and (Hi) hold.
Let o : K — RU {400} be a Is.c. function with dom A C dom ¢ that
satisfies

(%) Ap(x) + Hi(x,{) <0 Vx € M, Y¢ € dvypi(x), Vi e L.

Then ¢ is strongly increasing.

Recall

(%) is equivalent to say : Vi € Z, Vx € M; and Vg € C}(R") such that ¢ — g
attains a local minimum at x relative to M;

Ap(x) + Hi(x, Vg(x)) < 0.
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Characterization of the Value Function

Theorem (CH - Zidani)

Suppose (SH) with KC stratifiable and A > Ag. Assume (Ho) and (H1).
Then the Value Function

I(x) = inf { /0 T ey (e, u(t))dt

uEA(X)}.

is the unique |.s.c. function with linear growth which is +00 on RN\ KC and
that satisfies :

AI(x) + H(x, ()
M9 (x) + Hi(x, ()

Vx € K, V¢ € 8yd(x),

>0
<0 Vx € M;, V¢ € dy9i(x), Vi € T,

where 9;(x) = 9(x) if x € M; and +oo otherwise.
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Characterization of the Value Function : My = int(K).

Theorem (CH - Zidani)

Suppose (SH) with K stratifiable with int(K) # @ and A > \g. Assume
(Ho) and (H1). Then the Value Function

Y(x) :=inf {/000 e MU(yH(t), u(t))dt

ueA(x)}.

is the unique |.s.c. function with linear growth which is +o00 on RN \ K and
that satisfies :

AI(x) + H(x,{) >0 Vx € IC, V(¢ € dvi(x),
M(x) + H(x,{) <0 Vx € int(K), V(¢ € dvi(x),
AMI(x) + Hi(x,¢) <0 Vx € M;, ¥¢ € Ovvi(x), Vi€ T\ {0},

where 9;(x) = 9(x) if x € M; and +oo otherwise.

v
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Applications to Networks

Suppose K is a network with one junction O and let
Ma, ..., M be its branches.
Assume that for each i € {1,...,p}, 34; C A s.t.

(Hs)  F(x, A) N T (x) = F(x, A7), WxeM;. M

For instance, for some v; € RV \ {0}
M; = (0,+00)v; and f(x, u) = fi(x,u)v;, Vx € M,; \

with and f; real-valued.

Claim - :
The hypothesis (Ho) and (H1) are satisfied.
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Applications to Networks

Theorem (CH - Zidani)

Suppose that (SH) with K a network as before and A > \g. Assume that
(Hs3) holds and let

Ag={ue A| f(O,u) =0}

Then the Value Function is the unique I.s.c. function with linear growth
which is +-00 on RN \ K and that satisfies :

A (x) + max {=(, f(x,u)) —l(x,u)} =0 Vx e M;, V(e dyi(x),

XJ(O) — min (O, u) < 0.

C. Hermosilla (INRIA Saclay)
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Final remarks

@ The interior of K can always be taken as a stratum and so, the
constrained Hamiton-Jacobi equation proposed by Soner is included in
the set of equations proposed in the main theorem.

@ The characterize of the Value Function neither requires its continuity
nor that the state constraint set has empty interior.

@ Under the continuity of the Value Function (on its domain) the
controllability assumption can be dropped.

@ The controllability assumption can be replaced by a stronger but
easier to verify hypothesis of full controllability on manifolds.

@ The characterization for networks can be extended to a suitable notion
of generalized network where the junction is replaced by a manifold.
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@ The interior of K can always be taken as a stratum and so, the
constrained Hamiton-Jacobi equation proposed by Soner is included in
the set of equations proposed in the main theorem.

@ The characterize of the Value Function neither requires its continuity
nor that the state constraint set has empty interior.

@ Under the continuity of the Value Function (on its domain) the
controllability assumption can be dropped.

@ The controllability assumption can be replaced by a stronger but
easier to verify hypothesis of full controllability on manifolds.

@ The characterization for networks can be extended to a suitable notion
of generalized network where the junction is replaced by a manifold.

Thanks for your attention !
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