Optimal control problems on stratifiable state constraints sets.

Cristopher HERMOSILLA Joint work with Hasnaa ZIDANI

Commands, INRIA Saclay Île-de-France UMA, ENSTA ParisTech

The 10th AIMS Conference on Dynamical Systems Differential Equations and Applications

Introduction

We consider an infinite horizon problem with state constraints \mathcal{K} :

$$(\mathsf{P}) \quad \inf\left\{\int_0^\infty e^{-\lambda t}\ell(y^u_x(t),u(t))dt \ \left| \begin{array}{c} u:[0,+\infty)\to\mathcal{A} \ \text{measurable} \\ y^u_x(t)\in\mathcal{K} \ \forall t\geq 0 \end{array} \right\}.$$

where $\lambda > 0$ is fixed and $y_{\chi}^{u}(\cdot)$ is a trajectory of the control system

$$\begin{cases} \dot{y} = f(y, u) & \text{a.e. } t \ge 0\\ y(0) = x \in \mathcal{K} \end{cases}$$

We are mainly concerned with a characterization of the Value Function of (P) as the bilateral solution to a Hamilton-Jacobi-Bellman (HJB) equation

$$\lambda \vartheta + H(x, \nabla \vartheta(x)) = 0.$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction

Basic properties of the Value Function

$$\vartheta(x) := \inf_{u \in \mathbb{A}(x)} \int_0^\infty e^{-\lambda t} \ell(y^u_x(t), u(t)) dt, \qquad \forall x \in \mathcal{K},$$

where $\mathbb{A}(x) = \{ u : [0, +\infty) \to \mathcal{A} \text{ measurable } \mid y^u_x(t) \in \mathcal{K} \quad \forall t \geq 0 \}.$

Known facts (Standard hypothesis + Convexity of dynamics)

- If $\lambda > \lambda_0$ for some $\lambda_0 > 0$:
 - $\forall x \in \mathcal{K}, \exists u^* \in \mathbb{A}(x)$ a minimizer provided $\vartheta(x) \in \mathbb{R}$.
 - $\vartheta : \mathcal{K} \to \mathbb{R} \cup \{+\infty\}$ is lower semicontinuous.
 - ϑ is the unique function that satisfies the DPP.
 - ϑ is a supersolution of the HJB equation on \mathcal{K} .
 - ϑ is a subsolution of the HJB equation on $int(\mathcal{K})$.

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction More basic properties of the Value Function

$$artheta(x) := \inf_{u \in \mathbb{A}(x)} \int_0^\infty e^{-\lambda t} \ell(y^u_x(t), u(t)) dt, \qquad \forall x \in \mathcal{K}.$$

Known facts (Comparison principle)

• if φ is a supersolution of the HJB equation on ${\cal K}$ then

$$\vartheta(x) \leq \varphi(x), \quad \forall x \in \mathcal{K}.$$

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Introduction More basic properties of the Value Function

$$\vartheta(x) := \inf_{u \in \mathbb{A}(x)} \int_0^\infty e^{-\lambda t} \ell(y^u_x(t), u(t)) dt, \qquad \forall x \in \mathcal{K}.$$

Known facts (Comparison principle)

• if φ is a supersolution of the HJB equation on ${\cal K}$ then

$$\vartheta(x) \leq \varphi(x), \quad \forall x \in \mathcal{K}.$$

• if φ is a subsolution of the HJB equation on $int(\mathcal{K})$ then $\vartheta(x) \ge \varphi(x), \quad \forall x \in \mathcal{K} \quad \longleftarrow \text{May not be true }!.$

Feasible Neighboring Trajectories Approach Soner, Frankowska-Vinter, Clarke-Stern, among many others

When it does hold ??

- $\vartheta(\cdot)$ is continuous up to the boundary.
- Interior approximation of trajectories.
- Some monotonicity properties along trajectories.

Feasible Neighboring Trajectories Approach Soner, Frankowska-Vinter, Clarke-Stern, among many others

When it does hold ??

- $\vartheta(\cdot)$ is continuous up to the boundary.
- Interior approximation of trajectories.
- Some monotonicity properties along trajectories.

What do we need to achieve one of these ??

 \hookrightarrow Tameness properties : $\mathcal{K} = \overline{\operatorname{int}(\mathcal{K})}$.

 ↔ Pointing Conditions (Inward or Outward).

Example

$$\begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ u \end{pmatrix}$$

$$y_1(0) = x,$$

$$y_2(0) = v,$$

$$u \in \mathcal{A} := [-1, 1]$$

$$y_1(t), y_2(t) \in [-r, r]$$

Note that :

$$\left\langle \begin{pmatrix} 0\\ u \end{pmatrix}, \begin{pmatrix} 1\\ 0 \end{pmatrix} \right\rangle = 0$$

- 2

・ロト ・個ト ・ヨト ・ヨト

More complicated state constraints

Dynamic Programming Principle

$$\vartheta(x) = \inf_{u \in \mathbb{A}(x)} \left\{ \int_0^T e^{-\lambda t} \ell(y_x^u(t), u(t)) dt + e^{-\lambda T} \vartheta(y_x^u(T)) \right\}, \quad \forall T \ge 0.$$

イロト イポト イヨト イヨト 三日

Dynamic Programming Principle

Recall

$$\vartheta(x) = \inf_{u \in \mathbb{A}(x)} \left\{ \int_0^T e^{-\lambda t} \ell(y_x^u(t), u(t)) dt + e^{-\lambda T} \vartheta(y_x^u(T)) \right\}, \quad \forall T \ge 0.$$

In particular, the Value Function is strongly increasing :

Definition

A function $\varphi : \mathcal{K} \to \mathbb{R} \cup \{+\infty\}$ is called strongly increasing provided dom $\mathbb{A} \subseteq \operatorname{dom} \varphi$ and $\forall x \in \mathcal{K}, \forall u \in \mathbb{A}(x)$

$$arphi(x) \leq e^{-\lambda t} arphi(y^u_x(t)) + \int_0^t e^{-\lambda s} \ell(y^u_x(s), u(s)) ds \quad \forall t \geq 0.$$

(日) (周) (日) (日) (日)

Dynamic Programming Principle

Recall

$$\vartheta(x) = \inf_{u \in \mathbb{A}(x)} \left\{ \int_0^T e^{-\lambda t} \ell(y_x^u(t), u(t)) dt + e^{-\lambda T} \vartheta(y_x^u(T)) \right\}, \quad \forall T \ge 0.$$

In particular, the Value Function is strongly increasing :

Definition

A function $\varphi : \mathcal{K} \to \mathbb{R} \cup \{+\infty\}$ is called strongly increasing provided dom $\mathbb{A} \subseteq \operatorname{dom} \varphi$ and $\forall x \in \mathcal{K}, \forall u \in \mathbb{A}(x)$

$$arphi(x) \leq e^{-\lambda t} arphi(y^u_x(t)) + \int_0^t e^{-\lambda s} \ell(y^u_x(s), u(s)) ds \quad \forall t \geq 0.$$

Under suitable assumptions :

 φ is strongly increasing $\Rightarrow \vartheta(x) \ge \varphi(x), \ \forall x \in \mathcal{K}.$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Standing Hypothesis (SH)

- \mathcal{K} is closed and $\mathcal{A} \subseteq \mathbb{R}^m$ is nonempty and compact.
- $\ell : \mathbb{R}^N \times \mathcal{A} \to [0, +\infty)$ and $f : \mathbb{R}^N \times \mathcal{A} \to \mathbb{R}^N$ are continuous and Lipschitz w.r.t. the state :

$$\exists L>0 ext{ such that } egin{array}{ll} |f(x,u)-f(y,u)|\ |\ell(x,u)-\ell(y,u)| \end{pmatrix} \leq L|x-y| & orall u \in \mathcal{A}. \end{array}$$

- The cost has linear growth w.r.t. the state :
 - $\exists c > 0 ext{ such that } \ell(x,u) \leq c(1+|x|) \qquad orall u \in \mathcal{A}.$
- We assume convexity of the augmented dynamics :

$$\left\{ egin{pmatrix} f(x,u) \ e^{-\lambda t}(\ell(x,u)+r) \end{pmatrix} \ \middle| \ egin{pmatrix} u \in \mathcal{A}, \ r \geq 0 \ r \leq c(1+|x|) - \ell(x,u) \end{smallmatrix}
ight\}, \quad orall (t,x) \in \mathbb{R} imes \mathbb{R}^N$$

Example

<

$$\mathcal{A}$$
 convex, $f(x, u) = f_0(x) + F(x)u$ and $u \mapsto \ell(x, u)$ convex.

Strongly Increasing Principle Characterization of subsolutions

Definition (Subdifferentials)

Let $\varphi : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ be a l.s.c. function. A vector $\zeta \in \mathbb{R}^N$ is called a viscosity subgradient of φ at $x \in \operatorname{dom} \varphi$ if and only if :

 $\exists g \in \mathcal{C}^1(\mathbb{R}^N)$ s.t. $\nabla g(x) = \zeta$ and $\varphi - g$ attains a local minimum at x.

We denote by $\partial_V \varphi(x)$ the set of all viscosity subgradients of φ at x.

Proposition

Suppose that (SH) holds and let $\varphi : \mathcal{K} \to \mathbb{R} \cup \{+\infty\}$ be a l.s.c. function. If φ is strongly increasing then

 $\lambda \varphi(x) + H(x,\zeta) \leq 0 \qquad \forall x \in int(\mathcal{K}), \ \forall \zeta \in \partial_V \varphi(x).$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Stratifiable sets

Definition

A closed set $\mathcal{K} \subseteq \mathbb{R}^N$ is said to be stratifiable if there exists a locally finite collection $\{\mathcal{M}_i : i \in \mathcal{I}\}$ of embedded manifolds of \mathbb{R}^N such that :

•
$$\mathcal{K} = \bigcup_{i \in \mathcal{I}} \mathcal{M}_i$$
 and $\mathcal{M}_i \cap \mathcal{M}_j = \emptyset$ whenever $i \neq j$.

• $\mathcal{M}_i \cap \overline{\mathcal{M}_j} \neq \emptyset$, then $\mathcal{M}_i \subseteq \overline{\mathcal{M}_j}$ and $\dim(\mathcal{M}_i) < \dim(\mathcal{M}_j)$.

Stratifiable sets

The class of stratifiable sets on \mathbb{R}^N is wide, it includes :

- Semilinear sets \rightarrow finite union of open polyhedra.
- \bullet Semialgebraic sets \rightarrow finite union of polynomial manifolds.
- $\bullet\,$ Subanalytic sets \rightarrow locally finite union of analytic manifolds.

Characterization of subsolutions Some basic definitions and notation

Assume that \mathcal{K} is stratifiable and let $\{\mathcal{M}_i\}$ be its strata. For each stratum \mathcal{M}_i we define

• the set of tangent controls as the map $\mathcal{A}_i : \mathcal{M}_i \rightrightarrows \mathcal{A}$ given by

$$\mathcal{A}_i(x) := \{ u \in \mathcal{A} \mid f(x, u) \in \mathcal{T}_{\mathcal{M}_i}(x) \}.$$

• the tangential Hamiltonian as the map $H_i : \mathcal{M}_i \times \mathbb{R}^N \to \mathbb{R}$ given by

$$H_i(x,\zeta) = \max_{u \in \mathcal{A}_i(x)} \left\{ -\langle \zeta, f(x,u) \rangle - \ell(x,u) \right\}.$$

A B K A B K

Tangent controls

э

< AP

Tangent controls

э

Characterization of subsolutions (necessity)

Proposition (CH - Zidani)

Suppose that (SH) holds with \mathcal{K} is stratifiable and let $\varphi : \mathcal{K} \to \mathbb{R} \cup \{+\infty\}$ be a l.s.c. function. Assume that

 (H_0) \mathcal{A}_i is a Lipschitz set-valued map or has empty images on \mathcal{M}_i .

If φ is strongly increasing then for each $i \in \mathcal{I}$

 $(\bigstar) \qquad \lambda \varphi(x) + H_i(x,\zeta) \leq 0 \qquad \forall x \in \mathcal{M}_i, \ \forall \zeta \in \partial_V \varphi_i(x),$

where $\varphi_i(x) = \varphi(x)$ if $x \in \overline{\mathcal{M}}_i$ and $+\infty$ otherwise.

Remark

(\bigstar) is equivalent to say : $\forall i \in \mathcal{I}, \forall x \in \mathcal{M}_i \text{ and } \forall g \in \mathcal{C}^1(\mathbb{R}^N)$ such that $\varphi - g$ attains a local minimum at x relative to \mathcal{M}_i

 $\lambda \varphi(x) + H_i(x, \nabla g(x)) \leq 0.$

The converse? Strong Invariance Principle on $int(\mathcal{K})$

$$\lambda \varphi(x) + \max_{u \in \mathcal{A}} \{ -\langle \zeta, f(x, u) \rangle - \ell(x, u) \} \le 0 \qquad \forall x \in \operatorname{int}(\mathcal{K}), \ \forall \zeta \in \partial_V \varphi(x).$$
 \Downarrow

$$y_x^u(t) \in \operatorname{int}(\mathcal{K})$$
 for every $t \in (a, b)$, where $0 \le a < b < +\infty$ then
 $\varphi(y_x^u(a)) \le e^{-\lambda(b-a)}\varphi(y_x^u(b)) + e^{\lambda a} \int_a^b e^{-\lambda t}\ell(y_x^u(t), u(t))dt.$

∜

Any admissible trajectory y_x^u defined on [0, T] with $y_x^u(t) \in int(\mathcal{K})$ for every $t \in (0, T)$ satisfies the Strong Increasing Inequality.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ・ 日 ・ ・

The converse?

Strong Invariance Principle on each stratum

$$\lambda \varphi(x) + \max_{u \in \mathcal{A}_i(x)} \{ -\langle \zeta, f(x, u) \rangle - \ell(x, u) \} \le 0 \qquad \forall x \in \mathcal{M}_i, \ \forall \zeta \in \partial_V \varphi_i(x).$$
 \Downarrow

$$y_x^u(t) \in \mathcal{M}_i$$
 for every $t \in (a, b)$, where $0 \le a < b < +\infty$ then
 $\varphi(y_x^u(a)) \le e^{-\lambda(b-a)}\varphi(y_x^u(b)) + e^{\lambda a} \int_a^b e^{-\lambda t} \ell(y_x^u(t), u(t)) dt.$

C. Hermosilla (INRIA Saclay)

Madrid, July 10th 2014 17 / 26

Suppose that $y_x^u(t) \in \mathcal{K}$, $\forall t \in [0, T]$ and there exists a partition of [0, T]

$$\pi = \{0 = t_0 < t_1 < \ldots < t_n < t_{n+1} = T\}$$

so that $\forall l \in \{0, \dots, n\}, \exists \mathcal{M}_i \text{ with } y_x^u(t) \in \mathcal{M}_i, \forall t \in (t_l, t_{l+1}).$

Whence, $\forall l \in \{0, \ldots, n\}$ we have

$$\varphi(y_x^u(t_l)) \leq e^{-\lambda(t_{l+1}-t_l)}\varphi(y_x^u(t_{l+1})) + e^{\lambda t_l} \int_{t_l}^{t_{l+1}} e^{-\lambda t} \ell(y_x^u(t), u(t)) dt.$$

Therefore y_x^u satisfies the Strong Increasing Inequality !!

Suppose that $y_x^u(t) \in \mathcal{K}$, $\forall t \in [0, T]$ and there exists a partition of [0, T]

$$\pi = \{0 = t_0 < t_1 < \ldots < t_n < t_{n+1} = T\}$$

so that $\forall l \in \{0, \dots, n\}, \exists \mathcal{M}_i \text{ with } y_x^u(t) \in \mathcal{M}_i, \forall t \in (t_l, t_{l+1}).$

Whence, $\forall l \in \{0, \ldots, n\}$ we have

$$\varphi(y_x^u(t_l)) \leq e^{-\lambda(t_{l+1}-t_l)}\varphi(y_x^u(t_{l+1})) + e^{\lambda t_l} \int_{t_l}^{t_{l+1}} e^{-\lambda t} \ell(y_x^u(t), u(t)) dt.$$

Therefore y_x^u satisfies the Strong Increasing Inequality !!

Suppose that $y_x^u(t) \in \mathcal{K}$, $\forall t \in [0, T]$ and there exists a partition of [0, T]

$$\pi = \{0 = t_0 < t_1 < \ldots < t_n < t_{n+1} = T\}$$

so that $\forall l \in \{0, \dots, n\}, \exists \mathcal{M}_i \text{ with } y_x^u(t) \in \mathcal{M}_i, \forall t \in (t_l, t_{l+1}).$

Whence, $\forall l \in \{0, \ldots, n\}$ we have

$$\varphi(y_x^u(t_l)) \leq e^{-\lambda(t_{l+1}-t_l)}\varphi(y_x^u(t_{l+1})) + e^{\lambda t_l} \int_{t_l}^{t_{l+1}} e^{-\lambda t} \ell(y_x^u(t), u(t)) dt.$$

Therefore y_x^u satisfies the Strong Increasing Inequality !!

Suppose that $y_x^u(t) \in \mathcal{K}$, $\forall t \in [0, T]$ and there is NO partition of [0, T]

$$\pi = \{0 = t_0 < t_1 < \ldots < t_n < t_{n+1} = T\}$$

so that $\forall l \in \{0, \dots, n\}, \exists \mathcal{M}_i \text{ with } y_x^u(t) \in \mathcal{M}_i, \forall t \in (t_l, t_{l+1}).$

What if the trajectory "chatters" between two or more strata???

Controllability assumption

.

$$(H_1) \qquad \begin{cases} \forall i \in \mathcal{I} \text{ with } \operatorname{dom} \mathcal{A}_i \neq \emptyset, \ \exists \delta_i, \Delta_i > 0 \text{ such that} \\ \mathcal{R}^{(t)}(x) \cap \overline{\mathcal{M}}_i \subseteq \bigcup_{s \in [0, \Delta_i t]} \mathcal{R}_i^{(s)}(x), \quad \forall x \in \mathcal{M}_i, \ \forall t \in [0, \delta_i]. \end{cases}$$

$$\mathcal{R}^{(t)}(\cdot)$$
 : reachable set at time t of $x \mapsto f(x, \mathcal{A})$.
 $\mathcal{R}^{(t)}_i(\cdot)$: reachable set at time t of $x \mapsto f(x, \mathcal{A}_i(x))$.

$$f(x_1, x_2, u) = (x_2, u) u \in [-1, 1]$$

$$\mathcal{A}_0(x) = \mathcal{A}$$

 $\mathcal{A}_i(x) = \{0\}$ for $i = 1, \dots, 4$
 $\mathcal{A}_j(x) = \emptyset$ for $j = 5, \dots, 12$

∃ ⊳ Madrid, July 10th 2014 19 / 26

æ

Controllability assumption

$$(H_1) \quad \begin{cases} \forall i \in \mathcal{I} \text{ with } \operatorname{dom} \mathcal{A}_i \neq \emptyset, \ \exists \delta_i, \Delta_i > 0 \text{ such that} \\ \mathcal{R}^{(t)}(x) \cap \overline{\mathcal{M}}_i \subseteq \bigcup_{s \in [0, \Delta_i t]} \mathcal{R}_i^{(s)}(x), \quad \forall x \in \mathcal{M}_i, \ \forall t \in [0, \delta_i]. \end{cases}$$

$$\mathcal{R}^{(t)}(\cdot)$$
 : reachable set at time t of $x \mapsto f(x, \mathcal{A})$.
 $\mathcal{R}^{(t)}_i(\cdot)$: reachable set at time t of $x \mapsto f(x, \mathcal{A}_i(x))$.

Lemma

Suppose (SH) with \mathcal{K} stratifiable. Assume that (H_0) and (H_1) hold. For any $x \in \mathcal{K}$ and T > 0 there exists L > 0 such that : $\forall u \in \mathbb{A}(x), \forall \varepsilon > 0$ if $y_x^u(b), y_x^u(a) \in \mathcal{M}_i$ with $0 \le a < b \le T$ for some $i \in \mathcal{I}$ then,

$$\varphi(y^u_x(a)) \leq e^{\lambda \varepsilon} \left(e^{-\lambda(b-a)} \varphi(y^u_x(b)) + e^{\lambda a} \int_a^b e^{-\lambda t} \ell(y^u_x, u) dt \right) + L \varepsilon.$$

provided $\operatorname{meas}(\{t \in [a, b] \mid y_x^u(t) \notin \mathcal{M}_i\}) < \varepsilon.$

C. Hermosilla (INRIA Saclay)

Controllability assumption :

Chattering trajectory :

Approximated trajectory :

æ

(B)

< A

Characterization of subsolutions (sufficiency)

Proposition (CH - Zidani)

Suppose that (SH) with \mathcal{K} stratifiable. Assume that (H₀) and (H₁) hold. Let $\varphi : \mathcal{K} \to \mathbb{R} \cup \{+\infty\}$ be a l.s.c. function with dom $\mathbb{A} \subseteq \operatorname{dom} \varphi$ that satisfies

$$(\bigstar) \qquad \lambda \varphi(x) + H_i(x,\zeta) \leq 0 \qquad \forall x \in \mathcal{M}_i, \ \forall \zeta \in \partial_V \varphi_i(x), \ \forall i \in \mathcal{I}.$$

Then φ is strongly increasing.

Recall

(\bigstar) is equivalent to say : $\forall i \in \mathcal{I}, \forall x \in \mathcal{M}_i \text{ and } \forall g \in \mathcal{C}^1(\mathbb{R}^N)$ such that $\varphi - g$ attains a local minimum at x relative to \mathcal{M}_i

$$\lambda \varphi(x) + H_i(x, \nabla g(x)) \leq 0.$$

Characterization of the Value Function

Theorem (CH - Zidani)

Suppose (SH) with K stratifiable and $\lambda > \lambda_0$. Assume (H₀) and (H₁). Then the Value Function

$$\vartheta(x) := \inf \left\{ \int_0^\infty e^{-\lambda t} \ell(y^u_x(t), u(t)) dt \ \Big| \ u \in \mathbb{A}(x) \right\}.$$

is the unique l.s.c. function with linear growth which is $+\infty$ on $\mathbb{R}^N \setminus \mathcal{K}$ and that satisfies :

$$\begin{split} \lambda \vartheta(x) &+ H(x,\zeta) \geq 0 \qquad \forall x \in \mathcal{K}, \; \forall \zeta \in \partial_V \vartheta(x), \\ \lambda \vartheta(x) &+ H_i(x,\zeta) \leq 0 \qquad \forall x \in \mathcal{M}_i, \; \forall \zeta \in \partial_V \vartheta_i(x), \; \forall i \in \mathcal{I}, \end{split}$$

where $\vartheta_i(x) = \vartheta(x)$ if $x \in \overline{\mathcal{M}}_i$ and $+\infty$ otherwise.

3

Characterization of the Value Function : $\mathcal{M}_0 = \operatorname{int}(\mathcal{K})$.

Theorem (CH - Zidani)

Suppose (SH) with \mathcal{K} stratifiable with $int(\mathcal{K}) \neq \emptyset$ and $\lambda > \lambda_0$. Assume (H₀) and (H₁). Then the Value Function

$$\vartheta(x) := \inf \left\{ \int_0^\infty e^{-\lambda t} \ell(y^u_x(t), u(t)) dt \ \Big| \ u \in \mathbb{A}(x) \right\}.$$

is the unique l.s.c. function with linear growth which is $+\infty$ on $\mathbb{R}^N \setminus \mathcal{K}$ and that satisfies :

$$\begin{split} \lambda \vartheta(x) &+ H(x,\zeta) \geq 0 \qquad \forall x \in \mathcal{K}, \; \forall \zeta \in \partial_V \vartheta(x), \\ \lambda \vartheta(x) &+ H(x,\zeta) \leq 0 \qquad \forall x \in \operatorname{int}(\mathcal{K}), \; \forall \zeta \in \partial_V \vartheta(x), \\ \lambda \vartheta(x) &+ H_i(x,\zeta) \leq 0 \qquad \forall x \in \mathcal{M}_i, \; \forall \zeta \in \partial_V \vartheta_i(x), \; \forall i \in \mathcal{I} \setminus \{0\}, \end{split}$$

where $\vartheta_i(x) = \vartheta(x)$ if $x \in \overline{\mathcal{M}}_i$ and $+\infty$ otherwise.

3

Applications to Networks

Suppose \mathcal{K} is a network with one junction \mathcal{O} and let $\mathcal{M}_1, \ldots, \mathcal{M}_p$ be its branches. Assume that for each $i \in \{1, \ldots, p\}$, $\exists A_i \subseteq A$ s.t. $(H_3) \quad f(x,\mathcal{A}) \cap \mathcal{T}_{\mathcal{M}_i}(x) = f(x,\mathcal{A}_i), \quad \forall x \in \mathcal{M}_i.$ For instance, for some $v_i \in \mathbb{R}^N \setminus \{0\}$ $\mathcal{M}_i = (0, +\infty)v_i$ and $f(x, u) = f_i(x, u)v_i$, $\forall x \in \mathcal{M}_i$ with and f_i real-valued. Claim The hypothesis (H_0) and (H_1) are satisfied.

Applications to Networks

Theorem (CH - Zidani)

Suppose that (SH) with \mathcal{K} a network as before and $\lambda > \lambda_0$. Assume that (H₃) holds and let

$$\mathcal{A}_0 = \{ u \in \mathcal{A} \mid f(\mathcal{O}, u) = 0 \}.$$

Then the Value Function is the unique l.s.c. function with linear growth which is $+\infty$ on $\mathbb{R}^N \setminus \mathcal{K}$ and that satisfies :

$$egin{aligned} \lambdaartheta(x)+\max_{u\in\mathcal{A}_i}\left\{-\langle\zeta,f(x,u)
angle-\ell(x,u)
ight\}&=0\quad orall x\in\mathcal{M}_i,\ orall\zeta\in\partial_Vartheta(x),\ \lambdaartheta(\mathcal{O})+H(\mathcal{O},\zeta)&\geq0\quad orall\zeta\in\partial_Vartheta(\mathcal{O}),\ \lambdaartheta(\mathcal{O})-\min_{u\in\mathcal{A}_0}\ell(\mathcal{O},u)&\leq0. \end{aligned}$$

- 20

イロト 不得下 イヨト イヨト

Final remarks

- The interior of \mathcal{K} can always be taken as a stratum and so, the constrained Hamiton-Jacobi equation proposed by Soner is included in the set of equations proposed in the main theorem.
- The characterize of the Value Function neither requires its continuity nor that the state constraint set has empty interior.
- Under the continuity of the Value Function (on its domain) the controllability assumption can be dropped.
- The controllability assumption can be replaced by a stronger but easier to verify hypothesis of full controllability on manifolds.
- The characterization for networks can be extended to a suitable notion of generalized network where the junction is replaced by a manifold.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Final remarks

- The interior of \mathcal{K} can always be taken as a stratum and so, the constrained Hamiton-Jacobi equation proposed by Soner is included in the set of equations proposed in the main theorem.
- The characterize of the Value Function neither requires its continuity nor that the state constraint set has empty interior.
- Under the continuity of the Value Function (on its domain) the controllability assumption can be dropped.
- The controllability assumption can be replaced by a stronger but easier to verify hypothesis of full controllability on manifolds.
- The characterization for networks can be extended to a suitable notion of generalized network where the junction is replaced by a manifold.

Thanks for your attention !

・ 戸 ト ・ ヨ ト ・ ヨ ト

э