Optimal feedback control, first-order PDE systems, and obstacle problems

Pablo Pedregal

Universidad de Castilla-La Mancha

The 10th AIMS Conference, July, 2014

Basic problem

Minimize in $\mathbf{u}(s) \in K: \quad I(\mathbf{u})=\int_{0}^{T} F(\mathbf{x}(s), \mathbf{u}(s)) d s(+g(\mathbf{x}(T)))$
subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s)) \text { in }(0, T), \quad \mathbf{x}(0)=\mathbf{x}_{0}, \mathbf{x}(s) \in \Omega
$$

where:

Basic problem

Minimize in $\mathbf{u}(s) \in K: \quad I(\mathbf{u})=\int_{0}^{T} F(\mathbf{x}(s), \mathbf{u}(s)) d s(+g(\mathbf{x}(T)))$
subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s)) \text { in }(0, T), \quad \mathbf{x}(0)=\mathbf{x}_{0}, \mathbf{x}(s) \in \Omega
$$

where:

- $T>0$ is the time horizon considered;

Basic problem

Minimize in $\mathbf{u}(s) \in K: \quad I(\mathbf{u})=\int_{0}^{T} F(\mathbf{x}(s), \mathbf{u}(s)) d s(+g(\mathbf{x}(T)))$
subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s)) \text { in }(0, T), \quad \mathbf{x}(0)=\mathbf{x}_{0}, \mathbf{x}(s) \in \Omega
$$

where:

- $T>0$ is the time horizon considered;
$■ \Omega \subset \mathbb{R}^{N}\left(\Omega=\mathbb{R}^{N}\right)$, feasible set for $\mathbf{x}:(0, T) \rightarrow \Omega$;

Basic problem

Minimize in $\mathbf{u}(s) \in K: \quad I(\mathbf{u})=\int_{0}^{T} F(\mathbf{x}(s), \mathbf{u}(s)) d s(+g(\mathbf{x}(T)))$
subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s)) \text { in }(0, T), \quad \mathbf{x}(0)=\mathbf{x}_{0}, \mathbf{x}(s) \in \Omega
$$

where:

- $T>0$ is the time horizon considered;
$■ \Omega \subset \mathbb{R}^{N}\left(\Omega=\mathbb{R}^{N}\right)$, feasible set for $\mathbf{x}:(0, T) \rightarrow \Omega$;
■ $K \subset \mathbb{R}^{m}$, feasible set for the control $\mathbf{u}:(0, T) \rightarrow K$;

Basic problem

Minimize in $\mathbf{u}(s) \in K: \quad I(\mathbf{u})=\int_{0}^{T} F(\mathbf{x}(s), \mathbf{u}(s)) d s(+g(\mathbf{x}(T)))$
subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s)) \text { in }(0, T), \quad \mathbf{x}(0)=\mathbf{x}_{0}, \mathbf{x}(s) \in \Omega
$$

where:

- $T>0$ is the time horizon considered;
$■ \Omega \subset \mathbb{R}^{N}\left(\Omega=\mathbb{R}^{N}\right)$, feasible set for $\mathbf{x}:(0, T) \rightarrow \Omega$;
■ $K \subset \mathbb{R}^{m}$, feasible set for the control $\mathbf{u}:(0, T) \rightarrow K$;
- $\mathrm{x}_{0} \in \mathbb{R}^{N}$, initial state;

Basic problem

Minimize in $\mathbf{u}(s) \in K: \quad I(\mathbf{u})=\int_{0}^{T} F(\mathbf{x}(s), \mathbf{u}(s)) d s(+g(\mathbf{x}(T)))$
subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s)) \text { in }(0, T), \quad \mathbf{x}(0)=\mathbf{x}_{0}, \mathbf{x}(s) \in \Omega
$$

where:

- $T>0$ is the time horizon considered;
$■ \Omega \subset \mathbb{R}^{N}\left(\Omega=\mathbb{R}^{N}\right)$, feasible set for $\mathbf{x}:(0, T) \rightarrow \Omega$;
■ $K \subset \mathbb{R}^{m}$, feasible set for the control $\mathbf{u}:(0, T) \rightarrow K$;
- $\mathrm{x}_{0} \in \mathbb{R}^{N}$, initial state;

■ $F: \Omega \times K \rightarrow \mathbb{R}$, density for cost functional, $g: \Omega \rightarrow \mathbb{R}$, contribution depending on the final state;

Basic problem

Minimize in $\mathbf{u}(s) \in K: \quad I(\mathbf{u})=\int_{0}^{T} F(\mathbf{x}(s), \mathbf{u}(s)) d s(+g(\mathbf{x}(T)))$ subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s)) \text { in }(0, T), \quad \mathbf{x}(0)=\mathbf{x}_{0}, \mathbf{x}(s) \in \Omega
$$

where:

- $T>0$ is the time horizon considered;
$■ \Omega \subset \mathbb{R}^{N}\left(\Omega=\mathbb{R}^{N}\right)$, feasible set for $\mathbf{x}:(0, T) \rightarrow \Omega$;
■ $K \subset \mathbb{R}^{m}$, feasible set for the control $\mathbf{u}:(0, T) \rightarrow K$;
- $\mathrm{x}_{0} \in \mathbb{R}^{N}$, initial state;

■ $F: \Omega \times K \rightarrow \mathbb{R}$, density for cost functional, $g: \Omega \rightarrow \mathbb{R}$, contribution depending on the final state;
■ $\mathbf{f}: \Omega \times K \rightarrow \mathbb{R}^{N}$, map providing the state system.

Concept

Optimal feedback map:

$$
\mathbf{U}:(0, T) \times \mathbb{R}^{N} \rightarrow K
$$

Concept

Optimal feedback map:

$$
\mathbf{U}:(0, T) \times \mathbb{R}^{N} \rightarrow K
$$

For $\mathbf{y} \in \mathbb{R}^{N}$, and $t \in(0, T)$, consider the problem

$$
\text { Minimize in } \mathbf{u}(t) \in K: \quad I(\mathbf{u})=\int_{t}^{T} F(\mathbf{x}(s), \mathbf{u}(s)) d s
$$

subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s)) \text { in }(t, T), \quad \mathbf{x}(t)=\mathbf{y}
$$

Concept

Optimal feedback map:

$$
\mathbf{U}:(0, T) \times \mathbb{R}^{N} \rightarrow K
$$

For $\mathbf{y} \in \mathbb{R}^{N}$, and $t \in(0, T)$, consider the problem

$$
\text { Minimize in } \mathbf{u}(t) \in K: \quad I(\mathbf{u})=\int_{t}^{T} F(\mathbf{x}(s), \mathbf{u}(s)) d s
$$

subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s)) \text { in }(t, T), \quad \mathbf{x}(t)=\mathbf{y} .
$$

Suppose $\mathbf{u}(s ; t, \mathbf{y})$ for $s \in(t, T)$ is the optimal solution.

Concept

Optimal feedback map:

$$
\mathbf{U}:(0, T) \times \mathbb{R}^{N} \rightarrow K
$$

For $\mathbf{y} \in \mathbb{R}^{N}$, and $t \in(0, T)$, consider the problem

$$
\text { Minimize in } \mathbf{u}(t) \in K: \quad I(\mathbf{u})=\int_{t}^{T} F(\mathbf{x}(s), \mathbf{u}(s)) d s
$$

subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s)) \text { in }(t, T), \quad \mathbf{x}(t)=\mathbf{y} .
$$

Suppose $\mathbf{u}(s ; t, \mathbf{y})$ for $s \in(t, T)$ is the optimal solution.
Then we take

$$
\mathbf{U}(t, \mathbf{y}) \equiv \mathbf{u}(t ; t, \mathbf{y})
$$

Fundamental property, and objective

Fundamental property, and objective

Proposition

Suppose the map $\mathbf{U}(t, \mathbf{y})$ is known, and let $(\mathbf{x}(t), \mathbf{u}(t))$ be an optimal pair for the control problem. Then $\mathbf{u}(t)=\mathbf{U}(t, \mathbf{x}(t))$.

Fundamental property, and objective

Proposition

Suppose the map $\mathbf{U}(t, \mathbf{y})$ is known, and let $(\mathbf{x}(t), \mathbf{u}(t))$ be an optimal pair for the control problem. Then $\mathbf{u}(t)=\mathbf{U}(t, \mathbf{x}(t))$.

IN PLAIN WORDS

Knowing $\mathbf{U}(t, \mathbf{y})$ will let you adjust to disturbances during the control process.

Fundamental property, and objective

Proposition

Suppose the map $\mathbf{U}(t, \mathbf{y})$ is known, and let $(\mathbf{x}(t), \mathbf{u}(t))$ be an optimal pair for the control problem. Then $\mathbf{u}(t)=\mathbf{U}(t, \mathbf{x}(t))$.

IN PLAIN WORDS

Knowing $\mathbf{U}(t, \mathbf{y})$ will let you adjust to disturbances during the control process.

IMPORTANT GOAL

How can one compute (approximate), in advance, the optimal feedback map $\mathbf{U}(t, \mathbf{y})$, so that measurements on the state $\mathbf{x}(t)$ would lead to the optimal control $\mathbf{u}(t)=\mathbf{U}(t, \mathbf{x}(t))$ without solving any optimal control problem?

Hamilton-Jacobi-Bellman equation

VALUE FUNCTION. $v(t, \mathbf{y})$, represents the optimal value for the problem defining $\mathbf{U}(t, \mathbf{y})$.

Hamilton-Jacobi-Bellman equation

VALUE FUNCTION. $v(t, \mathbf{y})$, represents the optimal value for the problem defining $\mathbf{U}(t, \mathbf{y})$. HAMILTONIAN.

$$
H(\mathbf{p}, \mathbf{x})=\min _{\mathbf{u} \in K}\{F(\mathbf{x}, \mathbf{u})+\mathbf{p} \cdot \mathbf{f}(\mathbf{x}, \mathbf{u})\} .
$$

Hamilton-Jacobi-Bellman equation

VALUE FUNCTION. $v(t, \mathbf{y})$, represents the optimal value for the problem defining $\mathbf{U}(t, \mathbf{y})$. HAMILTONIAN.

$$
H(\mathbf{p}, \mathbf{x})=\min _{\mathbf{u} \in K}\{F(\mathbf{x}, \mathbf{u})+\mathbf{p} \cdot \mathbf{f}(\mathbf{x}, \mathbf{u})\} .
$$

Important fact

Value function v must be a (viscosity) solution of

$$
v_{t}(t, \mathbf{x})+H(\nabla v(t, \mathbf{x}), \mathbf{x})=0 \text { in }(0, T) \times \mathbb{R}^{N}, \quad v(T, \mathbf{x})=0 .
$$

Once v is known,

$$
\mathbf{U}(t, \mathbf{x})=\operatorname{argmin}_{\mathbf{u} \in K}\{F(\mathbf{x}, \mathbf{u})+\nabla v(t, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}, \mathbf{u})\} .
$$

Hamilton-Jacobi-Bellman equation

VALUE FUNCTION. $v(t, \mathbf{y})$, represents the optimal value for the problem defining $\mathbf{U}(t, \mathbf{y})$. HAMILTONIAN.

$$
H(\mathbf{p}, \mathbf{x})=\min _{\mathbf{u} \in K}\{F(\mathbf{x}, \mathbf{u})+\mathbf{p} \cdot \mathbf{f}(\mathbf{x}, \mathbf{u})\} .
$$

Important fact

Value function v must be a (viscosity) solution of

$$
v_{t}(t, \mathbf{x})+H(\nabla v(t, \mathbf{x}), \mathbf{x})=0 \text { in }(0, T) \times \mathbb{R}^{N}, \quad v(T, \mathbf{x})=0 .
$$

Once v is known,

$$
\mathbf{U}(t, \mathbf{x})=\operatorname{argmin}_{\mathbf{u} \in K}\{F(\mathbf{x}, \mathbf{u})+\nabla v(t, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}, \mathbf{u})\} .
$$

Main difficulties: computation of H, and approximation of a fully non-linear PDE.

Variational problem: the simplest control problem

Variational problem: the simplest control problem

$$
\text { Integrand: } \quad \phi(\mathbf{x}, \xi): \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R},
$$

$$
\begin{aligned}
\text { Minimize in } \mathbf{x}(s): & \int_{t}^{T} \phi\left(\mathbf{x}(s), \mathbf{x}^{\prime}(s)\right) d s, \quad \mathbf{x}(t)=\mathbf{y} \\
\mathbf{x}(s) \equiv & \mathbf{X}(s ; t, \mathbf{y}), \text { optimal. }
\end{aligned}
$$

Variational problem: the simplest control problem

Integrand: $\quad \phi(\mathbf{x}, \xi): \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\text { Minimize in } \mathbf{x}(s): & \int_{t}^{T} \phi\left(\mathbf{x}(s), \mathbf{x}^{\prime}(s)\right) d s, \quad \mathbf{x}(t)=\mathbf{y}, \\
\mathbf{x}(s) & \equiv \mathbf{X}(s ; t, \mathbf{y}), \text { optimal. }
\end{aligned}
$$

Under regularity and convexity assumptions

$$
\begin{gathered}
-\left[\phi_{\xi}\left(\mathbf{x}(s), \mathbf{x}^{\prime}(s)\right)\right]^{\prime}+\phi_{\mathbf{x}}\left(\mathbf{x}(s), \mathbf{x}^{\prime}(s)\right)=0 \text { in }(t, T) \\
\mathbf{x}(t)=\mathbf{y}, \phi_{\xi}\left(\mathbf{x}(T), \mathbf{x}^{\prime}(T)\right)=0
\end{gathered}
$$

Variational problem: the simplest control problem

Integrand: $\quad \phi(\mathbf{x}, \xi): \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$,
Minimize in $\mathbf{x}(s): \quad \int_{t}^{T} \phi\left(\mathbf{x}(s), \mathbf{x}^{\prime}(s)\right) d s, \quad \mathbf{x}(t)=\mathbf{y}$,

$$
\mathbf{x}(s) \equiv \mathbf{X}(s ; t, \mathbf{y}) \text {, optimal. }
$$

Under regularity and convexity assumptions

$$
\begin{gathered}
-\left[\phi_{\xi}\left(\mathbf{x}(s), \mathbf{x}^{\prime}(s)\right)\right]^{\prime}+\phi_{\mathbf{x}}\left(\mathbf{x}(s), \mathbf{x}^{\prime}(s)\right)=0 \text { in }(t, T) \\
\mathbf{x}(t)=\mathbf{y}, \phi_{\xi}\left(\mathbf{x}(T), \mathbf{x}^{\prime}(T)\right)=0
\end{gathered}
$$

Basic idea: $\quad \mathbf{x}^{\prime}(s)=\mathbf{v}(s, \mathbf{x}(s))$ in $(t, T), \quad \mathbf{x}(t)=\mathbf{y}$,

$$
\begin{gathered}
\nabla \mathbf{v} \mathbf{v}+\mathbf{v}_{s}+\phi_{\xi \xi}(\mathbf{x}, \mathbf{v})^{-1}\left(\phi_{\xi \mathbf{x}}(\mathbf{x}, \mathbf{v}) \mathbf{v}-\phi_{\mathbf{x}}(\mathbf{x}, \mathbf{v})\right)=0 \\
\phi_{\xi}(\mathbf{x}, \mathbf{v}(T, \mathbf{x}))=0
\end{gathered}
$$

Idea $\left(K=\mathbb{R}^{m}\right)$

Idea $\left(K=\mathbb{R}^{m}\right)$

Optimal feedback mapping $\mathbf{U}(t, \mathbf{y})$: put, from the beginning, $\mathbf{u}=\mathbf{u}(t, \mathbf{y})$ instead of $\mathbf{u}=\mathbf{u}(t)$.

Idea $\left(K=\mathbb{R}^{m}\right)$

Optimal feedback mapping $\mathbf{U}(t, \mathbf{y})$: put, from the beginning, $\mathbf{u}=\mathbf{u}(t, \mathbf{y})$ instead of $\mathbf{u}=\mathbf{u}(t)$.

$$
\text { Minimize in } \mathbf{u}(t, \mathbf{y}): \quad \int_{\tau}^{T} F(\mathbf{x}(s), \mathbf{u}(s, \mathbf{x}(s))) d s
$$

subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s, \mathbf{x}(s))) \text { in }(\tau, T), \quad \mathbf{x}(\tau)=\mathbf{z}
$$

Idea $\left(K=\mathbb{R}^{m}\right)$

Optimal feedback mapping $\mathbf{U}(t, \mathbf{y})$: put, from the beginning, $\mathbf{u}=\mathbf{u}(t, \mathbf{y})$ instead of $\mathbf{u}=\mathbf{u}(t)$.

$$
\text { Minimize in } \mathbf{u}(t, \mathbf{y}) \text { : } \quad \int_{\tau}^{T} F(\mathbf{x}(s), \mathbf{u}(s, \mathbf{x}(s))) d s
$$

subject to

$$
\mathbf{x}^{\prime}(s)=\mathbf{f}(\mathbf{x}(s), \mathbf{u}(s, \mathbf{x}(s))) \text { in }(\tau, T), \quad \mathbf{x}(\tau)=\mathbf{z}
$$

Play, formally, with optimality conditions

$$
\begin{gathered}
\mathbf{u}(t, \mathbf{x}) \longrightarrow \mathbf{x}(t) \\
\mathbf{x}^{\prime}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t, \mathbf{x}(t)) \text { in }(\tau, T), \quad \mathbf{x}(\tau)=\mathbf{z} \\
\mathbf{U}(t, \mathbf{x}) \approx \mathbf{u}(t, \mathbf{x}) \longrightarrow \mathbf{X}(t) \approx \mathbf{x}(t), \mathbf{X}(0)=0 \\
\mathbf{x}^{\prime}+\epsilon \mathbf{X}^{\prime}=\mathbf{f}(\mathbf{x}+\epsilon \mathbf{X}, \mathbf{u}(t, \mathbf{x}+\epsilon \mathbf{X})+\epsilon \mathbf{U}(t, \mathbf{x}+\epsilon \mathbf{X}))
\end{gathered}
$$

Optimality conditions (cont'd)

$$
\mathbf{X}^{\prime}=\left(\mathbf{f}_{\mathbf{x}}+\mathbf{f}_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+\mathbf{f}_{\mathbf{u}} \mathbf{U} \text { in }(\tau, T), \quad \mathbf{X}(\tau)=0
$$

Optimality conditions (cont'd)

$$
\mathbf{X}^{\prime}=\left(\mathbf{f}_{\mathbf{x}}+\mathbf{f}_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+\mathbf{f}_{\mathbf{u}} \mathbf{U} \text { in }(\tau, T), \quad \mathbf{X}(\tau)=0
$$

Cost functional (in a similar way)

$$
\int_{\tau}^{T}\left[\left(F_{\mathbf{x}}+F_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+F_{\mathbf{u}} \mathbf{U}\right] d t
$$

Optimality conditions (cont'd)

$$
\mathbf{X}^{\prime}=\left(\mathbf{f}_{\mathbf{x}}+\mathbf{f}_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+\mathbf{f}_{\mathbf{u}} \mathbf{U} \text { in }(\tau, T), \quad \mathbf{X}(\tau)=0
$$

Cost functional (in a similar way)

$$
\int_{\tau}^{T}\left[\left(F_{\mathbf{x}}+F_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+F_{\mathbf{u}} \mathbf{U}\right] d t
$$

Costate $\mathbf{p}(t): \mathbf{p}(T)=0$

$$
\begin{aligned}
& \mathbf{p}^{\prime}+\mathbf{p}\left[\mathbf{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+\mathbf{f}_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x})\right] \\
= & F_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+F_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x}) \text { in }(\tau, T),
\end{aligned}
$$

Optimality conditions (cont'd)

$$
\mathbf{X}^{\prime}=\left(\mathbf{f}_{\mathbf{x}}+\mathbf{f}_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+\mathbf{f}_{\mathbf{u}} \mathbf{U} \text { in }(\tau, T), \quad \mathbf{X}(\tau)=0
$$

Cost functional (in a similar way)

$$
\int_{\tau}^{T}\left[\left(F_{\mathbf{x}}+F_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+F_{\mathbf{u}} \mathbf{U}\right] d t
$$

Costate $\mathbf{p}(t): \mathbf{p}(T)=0$

$$
\begin{aligned}
& \mathbf{p}^{\prime}+\mathbf{p}\left[\mathbf{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+\mathbf{f}_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x})\right] \\
= & F_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+F_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x}) \text { in }(\tau, T),
\end{aligned}
$$

Introduce costate, and integrate by parts

$$
\int_{\tau}^{T}\left[\left(F_{\mathbf{x}}+F_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+F_{\mathbf{u}} \mathbf{U}\right] d t=\int_{\tau}^{T}\left(F_{\mathbf{u}}-\mathbf{p f}_{\mathbf{u}}\right) \mathbf{U} d t .
$$

Optimality conditions (cont'd)

$$
\mathbf{X}^{\prime}=\left(\mathbf{f}_{\mathbf{x}}+\mathbf{f}_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+\mathbf{f}_{\mathbf{u}} \mathbf{U} \text { in }(\tau, T), \quad \mathbf{X}(\tau)=0
$$

Cost functional (in a similar way)

$$
\int_{\tau}^{T}\left[\left(F_{\mathbf{x}}+F_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+F_{\mathbf{u}} \mathbf{U}\right] d t
$$

Costate $\mathbf{p}(t): \mathbf{p}(T)=0$

$$
\begin{aligned}
& \mathbf{p}^{\prime}+\mathbf{p}\left[\mathbf{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+\mathbf{f}_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x})\right] \\
= & F_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+F_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x}) \text { in }(\tau, T),
\end{aligned}
$$

Introduce costate, and integrate by parts

$$
\int_{\tau}^{T}\left[\left(F_{\mathbf{x}}+F_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+F_{\mathbf{u}} \mathbf{U}\right] d t=\int_{\tau}^{T}\left(F_{\mathbf{u}}-\mathbf{p f}_{\mathbf{u}}\right) \mathbf{U} d t .
$$

Conclusion:
$1 F_{\mathbf{u}}-\mathbf{p f}_{\mathbf{u}} \equiv 0: \mathbf{u}$, equilibrium;

Optimality conditions (cont'd)

$$
\mathbf{X}^{\prime}=\left(\mathbf{f}_{\mathbf{x}}+\mathbf{f}_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+\mathbf{f}_{\mathbf{u}} \mathbf{U} \text { in }(\tau, T), \quad \mathbf{X}(\tau)=0
$$

Cost functional (in a similar way)

$$
\int_{\tau}^{T}\left[\left(F_{\mathbf{x}}+F_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+F_{\mathbf{u}} \mathbf{U}\right] d t
$$

Costate $\mathbf{p}(t): \mathbf{p}(T)=0$

$$
\begin{aligned}
& \mathbf{p}^{\prime}+\mathbf{p}\left[\mathbf{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+\mathbf{f}_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x})\right] \\
= & F_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+F_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x}) \text { in }(\tau, T),
\end{aligned}
$$

Introduce costate, and integrate by parts

$$
\int_{\tau}^{T}\left[\left(F_{\mathbf{x}}+F_{\mathbf{u}} \nabla \mathbf{u}\right) \mathbf{X}+F_{\mathbf{u}} \mathbf{U}\right] d t=\int_{\tau}^{T}\left(F_{\mathbf{u}}-\mathbf{p} \mathbf{f}_{\mathbf{u}}\right) \mathbf{U} d t
$$

Conclusion:

1. $F_{\mathbf{u}}-\mathbf{p f}_{\mathbf{u}} \equiv 0$: \mathbf{u}, equilibrium;

2 if integral <0 for a particular \mathbf{U}, then descent direction.

Conclusion and reinterpretation (more formal)

Write costate $\mathbf{p}(t)$ in feedback form $\mathbf{p}(t)=\mathbf{p}(t, \mathbf{x}(t))$, so that

$$
\mathbf{p}^{\prime}(t)=\mathbf{p}_{t}(t, \mathbf{x})+\nabla \mathbf{p}(t, \mathbf{x}) \mathbf{x}^{\prime}=\mathbf{p}_{t}(t, \mathbf{x})+\nabla \mathbf{p}(t, \mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))
$$

Conclusion and reinterpretation (more formal)

Equation for costate $\mathbf{p}(t, \mathbf{x})$ in $(0, T) \times \mathbb{R}^{N}: \mathbf{p}(T, \mathbf{x})=0$

$$
\begin{gathered}
\mathbf{p}_{t}(t, \mathbf{x})+\nabla \mathbf{p}(t, \mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \\
+\mathbf{p}(t, \mathbf{x})\left[\mathbf{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+\mathbf{f}_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x})\right] \\
=F_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+F_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x})
\end{gathered}
$$

Conclusion and reinterpretation (more formal)

Equation for costate $\mathbf{p}(t, \mathbf{x})$ in $(0, T) \times \mathbb{R}^{N}: \mathbf{p}(T, \mathbf{x})=0$

$$
\begin{gathered}
\mathbf{p}_{t}(t, \mathbf{x})+\nabla \mathbf{p}(t, \mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \\
+\mathbf{p}(t, \mathbf{x})\left[\mathbf{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+\mathbf{f}_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x})\right] \\
=F_{\mathbf{x}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+F_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \nabla \mathbf{u}(t, \mathbf{x}) .
\end{gathered}
$$

RESULT

Start with $\mathbf{u}(t, \mathbf{x})$, compute costate $\mathbf{p}(t, \mathbf{x})$:

$$
\begin{aligned}
& \mathbf{p}_{t}(t, \mathbf{x})+\nabla \mathbf{p}(t, \mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))+\mathbf{p}(t, \mathbf{x}) \nabla_{\mathbf{x}}[\mathbf{f}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))] \\
& \quad=\nabla_{\mathbf{x}}[F(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))] \text { in }(0, T) \times \mathbb{R}^{N}, \quad \mathbf{p}(T, \mathbf{x}) \equiv 0
\end{aligned}
$$

If $F_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))-\mathbf{p}(t, \mathbf{x}) \mathbf{f}_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))=0$, then $\mathbf{u}(t, \mathbf{x})=\mathbf{U}(t, \mathbf{x})$ is an equilibrium mapping for the feedback problem.

Descent direction

$$
\begin{aligned}
& \qquad \nabla I(\mathbf{u})(t, \mathbf{x}) \equiv F_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))-\mathbf{p}(t, \mathbf{x}) \mathbf{f}_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})) \\
& \text { Derivative of cost at } \mathbf{u}: \quad \int_{0}^{T} \nabla I(\mathbf{u})(t, \mathbf{x}(t)) \mathbf{U}(t, \mathbf{x}(t)) d t<0
\end{aligned}
$$

Descent direction

$$
\nabla I(\mathbf{u})(t, \mathbf{x}) \equiv F_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))-\mathbf{p}(t, \mathbf{x}) \mathbf{f}_{\mathbf{u}}(\mathbf{x}, \mathbf{u}(t, \mathbf{x})),
$$

Derivative of cost at \mathbf{u} : $\quad \int_{0}^{T} \nabla l(\mathbf{u})(t, \mathbf{x}(t)) \mathbf{U}(t, \mathbf{x}(t)) d t<0$,

Descent direction at u

Start with \mathbf{u}; compute costate \mathbf{p}; solve the problem

$$
-\Delta \mathbf{U}(t, \mathbf{x})+\nabla I(\mathbf{u})(t, \mathbf{x})=0 \text { in } \mathbb{R}^{N}
$$

for every $t \in[0, T] . \mathbf{U}(t, \mathbf{x})$ is a descent direction for \mathbf{u} in an average sense: for every t,

$$
\int_{\mathbb{R}^{N}} \nabla I(\mathbf{u})(t, \mathbf{x}) \mathbf{U}(t, \mathbf{x}) d \mathbf{x}\left(=-\int_{\mathbb{R}^{N}}|\nabla \mathbf{U}|^{2} d \mathbf{x}\right)<0
$$

Numerical scheme

Numerical scheme

1 Initialization. Take any initial $\mathbf{u}_{0}(t, \mathbf{x}) \in K$.

Numerical scheme

1 Initialization. Take any initial $\mathbf{u}_{0}(t, \mathbf{x}) \in K$.
2 Iterate until convergence:

Numerical scheme

1 Initialization. Take any initial $\mathbf{u}_{0}(t, \mathbf{x}) \in K$.
2 Iterate until convergence: if $\mathbf{u}_{j}(t, \mathbf{x})$ is known, then
1 Compute the costate $\mathbf{p}_{j}(t, \mathbf{x})$ by solving the corresponding linear, first-order PDE system for $\mathbf{u}=\mathbf{u}_{j}$
$\mathbf{p}_{t}+\nabla \mathbf{p} \mathbf{f}(\mathbf{x}, \mathbf{u})+\mathbf{p} \nabla_{\mathbf{x}}[\mathbf{f}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))]=\nabla_{\mathbf{x}}[F(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))]$ in $(0, T) \times \mathbb{R}^{N}$,
under the terminal time condition $\mathbf{p}(T, \mathbf{x})=\nabla g(\mathbf{x})$.

Numerical scheme

1 Initialization. Take any initial $\mathbf{u}_{0}(t, \mathbf{x}) \in K$.
2 Iterate until convergence: if $\mathbf{u}_{j}(t, \mathbf{x})$ is known, then
1 Compute the costate $\mathbf{p}_{j}(t, \mathbf{x})$ by solving the corresponding linear, first-order PDE system for $\mathbf{u}=\mathbf{u}_{j}$
$\mathbf{p}_{t}+\nabla \mathbf{p} \mathbf{f}(\mathbf{x}, \mathbf{u})+\mathbf{p} \nabla_{\mathbf{x}}[\mathbf{f}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))]=\nabla_{\mathbf{x}}[F(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))]$ in $(0, T) \times \mathbb{R}^{N}$,
under the terminal time condition $\mathbf{p}(T, \mathbf{x})=\nabla g(\mathbf{x})$.
2 Set $\nabla I\left(\mathbf{u}_{j}\right)(t, \mathbf{x})=F_{\mathbf{u}}\left(\mathbf{x}, \mathbf{u}_{j}(t, \mathbf{x})\right)-\mathbf{p}_{j}(t, \mathbf{x}) \mathbf{f}_{\mathbf{u}}\left(\mathbf{x}, \mathbf{u}_{j}(t, \mathbf{x})\right)$.

Numerical scheme

1 Initialization. Take any initial $\mathbf{u}_{0}(t, \mathbf{x}) \in K$.
2 Iterate until convergence: if $\mathbf{u}_{j}(t, \mathbf{x})$ is known, then
1 Compute the costate $\mathbf{p}_{j}(t, \mathbf{x})$ by solving the corresponding linear, first-order PDE system for $\mathbf{u}=\mathbf{u}_{j}$

$$
\mathbf{p}_{t}+\nabla \mathbf{p} \mathbf{f}(\mathbf{x}, \mathbf{u})+\mathbf{p} \nabla_{\mathbf{x}}[\mathbf{f}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))]=\nabla_{\mathbf{x}}[F(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))] \text { in }(0, T) \times \mathbb{R}^{N},
$$

under the terminal time condition $\mathbf{p}(T, \mathbf{x})=\nabla g(\mathbf{x})$.
2 Set $\nabla I\left(\mathbf{u}_{j}\right)(t, \mathbf{x})=F_{\mathbf{u}}\left(\mathbf{x}, \mathbf{u}_{j}(t, \mathbf{x})\right)-\mathbf{p}_{j}(t, \mathbf{x}) \mathbf{f}_{\mathbf{u}}\left(\mathbf{x}, \mathbf{u}_{j}(t, \mathbf{x})\right)$.
3 Solve the obstacle problem: Minimize in $\mathbf{U}(t, \mathbf{x}) \in K$:

$$
\int_{\mathbb{R}^{N}}\left(\frac{1}{2}\left|\nabla \mathbf{U}(t, \mathbf{x})-\nabla \mathbf{u}_{j}(t, \mathbf{x})\right|^{2}+\nabla I\left(\mathbf{u}_{j}\right)(t, \mathbf{x})\left(\mathbf{U}(t, \mathbf{x})-\mathbf{u}_{j}(t, \mathbf{x})\right)\right) d x
$$

to determine the optimal solution $\mathbf{U}_{j}(t, \mathbf{x})$.

Numerical scheme

1 Initialization. Take any initial $\mathbf{u}_{0}(t, \mathbf{x}) \in K$.
2 Iterate until convergence: if $\mathbf{u}_{j}(t, \mathbf{x})$ is known, then
1 Compute the costate $\mathbf{p}_{j}(t, \mathbf{x})$ by solving the corresponding linear, first-order PDE system for $\mathbf{u}=\mathbf{u}_{j}$

$$
\mathbf{p}_{t}+\nabla \mathbf{p} \mathbf{f}(\mathbf{x}, \mathbf{u})+\mathbf{p} \nabla_{\mathbf{x}}[\mathbf{f}(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))]=\nabla_{\mathbf{x}}[F(\mathbf{x}, \mathbf{u}(t, \mathbf{x}))] \text { in }(0, T) \times \mathbb{R}^{N},
$$

under the terminal time condition $\mathbf{p}(T, \mathbf{x})=\nabla g(\mathbf{x})$.
2 Set $\nabla I\left(\mathbf{u}_{j}\right)(t, \mathbf{x})=F_{\mathbf{u}}\left(\mathbf{x}, \mathbf{u}_{j}(t, \mathbf{x})\right)-\mathbf{p}_{j}(t, \mathbf{x}) \mathbf{f}_{\mathbf{u}}\left(\mathbf{x}, \mathbf{u}_{j}(t, \mathbf{x})\right)$.
3 Solve the obstacle problem: Minimize in $\mathbf{U}(t, \mathbf{x}) \in K$:

$$
\int_{\mathbb{R}^{N}}\left(\frac{1}{2}\left|\nabla \mathbf{U}(t, \mathbf{x})-\nabla \mathbf{u}_{j}(t, \mathbf{x})\right|^{2}+\nabla I\left(\mathbf{u}_{j}\right)(t, \mathbf{x})\left(\mathbf{U}(t, \mathbf{x})-\mathbf{u}_{j}(t, \mathbf{x})\right)\right) d x
$$

to determine the optimal solution $\mathbf{U}_{j}(t, \mathbf{x})$.
4 Update \mathbf{u}_{j} to $\mathbf{u}_{j}+\epsilon \mathbf{U}_{j}$ for some small ϵ.

An LQR example (R. Font)

$$
I(u)=\frac{1}{2} \int_{0}^{T}\left(x(t)^{2}+u(t)^{2}\right) d t, \quad x^{\prime}(t)=-x(t)+u(t)
$$

An LQR example (R. Font)

$$
I(u)=\frac{1}{2} \int_{0}^{T}\left(x(t)^{2}+u(t)^{2}\right) d t, \quad x^{\prime}(t)=-x(t)+u(t)
$$

Explicit feedback map:

$$
\begin{aligned}
& u(t, x)=\frac{1-\sqrt{2}+\exp (a)+\sqrt{2} \exp (a)}{1+\exp (a)} x \\
& a=2 \sqrt{2}\left(t-\frac{\sqrt{2} T-\log (-1+\sqrt{2})}{\sqrt{2}}\right)
\end{aligned}
$$

An LQR example (R. Font)

$$
I(u)=\frac{1}{2} \int_{0}^{T}\left(x(t)^{2}+u(t)^{2}\right) d t, \quad x^{\prime}(t)=-x(t)+u(t)
$$

Explicit feedback map:

$$
\begin{aligned}
& u(t, x)=\frac{1-\sqrt{2}+\exp (a)+\sqrt{2} \exp (a)}{1+\exp (a)} x \\
& a=2 \sqrt{2}\left(t-\frac{\sqrt{2} T-\log (-1+\sqrt{2})}{\sqrt{2}}\right)
\end{aligned}
$$

Iterative procedure
1 the linear, first-order PDE:

$$
p_{t}+(u-x) p_{x}+\left(u_{x}-1\right) p=x+u u_{x} \text { in }(0, T) \times \mathbb{R}, p(T, x)=0
$$

2 the elliptic problem, for each time slice,

$$
-U_{x x}+u-p=0 \text { in } \mathbb{R}
$$

Numerical results

ε	iter	$\left\|I-I_{\varepsilon}\right\|$	$\left\\|u-u_{\varepsilon}\right\\|_{\infty}$	$\left\\|x-x_{\varepsilon}\right\\|_{\infty}$
0.001	946	$2.1876 \cdot 10^{-8}$	$9.7579 \cdot 10^{-4}$	$2.0496 \cdot 10^{-4}$
0.01	289	$1.8454 \cdot 10^{-7}$	0.0015	$1.9809 \cdot 10^{-4}$
0.1	51	$1.0072 \cdot 10^{-5}$	0.0052	0.0014
0.2	17	$1.4742 \cdot 10^{-4}$	0.0365	0.005

Numerical results

ε	iter	$\left\|I-I_{\varepsilon}\right\|$	$\left\\|u-u_{\varepsilon}\right\\|_{\infty}$	$\left\\|x-x_{\varepsilon}\right\\|_{\infty}$
0.001	946	$2.1876 \cdot 10^{-8}$	$9.7579 \cdot 10^{-4}$	$2.0496 \cdot 10^{-4}$
0.01	289	$1.8454 \cdot 10^{-7}$	0.0015	$1.9809 \cdot 10^{-4}$
0.1	51	$1.0072 \cdot 10^{-5}$	0.0052	0.0014
0.2	17	$1.4742 \cdot 10^{-4}$	0.0365	0.005

Restrictions on the control

$$
I(u)=\int_{0}^{T}\left(x(t)^{2}+u(t)^{2}\right) d t, \quad x^{\prime}=u, \quad|u(t)| \leq 0.6
$$

Restrictions on the control

$$
I(u)=\int_{0}^{T}\left(x(t)^{2}+u(t)^{2}\right) d t, \quad x^{\prime}=u, \quad|u(t)| \leq 0.6 .
$$

Iterative procedure

1 the first-order PDE

$$
p_{t}+u p_{x}+u_{x} p=2\left(x+u u_{x}\right) \text { in }(0, T) \times \mathbb{R}, \quad p(T, x)=0
$$

2 the obstacle problem: minimize (for each fixed t) in $U(t, x) \in K$

$$
\int_{\mathbb{R}}\left(\frac{1}{2}|\nabla U-\nabla u|^{2}+\nabla I(u)(U-u)\right) d x
$$

with $K=[-0.6,0.6]$ and $\nabla I(u)=2 u-p$.

Numerical results

Numerical results

Two-dimensional situation

$$
\begin{aligned}
& I(u)=\int_{0}^{\infty}\left(\frac{1}{2}\left(x_{1}(t)^{2}+x_{2}(t)^{2}\right)+u_{1}(t)^{2}+u_{2}(t)^{2}\right) d t \\
& \left\{\begin{array}{l}
\dot{x}_{1}(t)= \\
\dot{x}_{1}(t)=x_{1}(t)^{3}+x_{2}(t)+u_{1}(t) \\
\dot{x}_{1}(t)+x_{1}(t)^{2} x_{2}(t)-x_{2}(t)+u_{2}(t)
\end{array}\right.
\end{aligned}
$$

Two-dimensional situation

$$
\begin{aligned}
& I(u)=\int_{0}^{\infty}\left(\frac{1}{2}\left(x_{1}(t)^{2}+x_{2}(t)^{2}\right)+u_{1}(t)^{2}+u_{2}(t)^{2}\right) d t \\
& \left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{1}(t)-x_{1}(t)^{3}+x_{2}(t)+u_{1}(t) \\
\dot{x}_{2}(t)=x_{1}(t)+x_{1}(t)^{2} x_{2}(t)-x_{2}(t)+u_{2}(t)
\end{array}\right.
\end{aligned}
$$

Comparison

Final example

$$
\begin{aligned}
I(u)= & \frac{1}{2} \int_{0}^{\infty}\left(x_{1}(t)^{2}+x_{2}(t)^{2}+u(t)^{2}\right) d t \\
& \left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{2}(t) \\
\dot{x}_{2}(t)=x_{1}(t)^{3}+u(t)
\end{array}\right.
\end{aligned}
$$

Final example

$$
\begin{aligned}
I(u)= & \frac{1}{2} \int_{0}^{\infty}\left(x_{1}(t)^{2}+x_{2}(t)^{2}+u(t)^{2}\right) d t \\
& \left\{\begin{array}{l}
\dot{x}_{1}(t)= \\
\dot{x}_{2}(t)= \\
x_{2}(t) \\
\dot{x}_{1}(t)^{3}+u(t)
\end{array}\right.
\end{aligned}
$$

Comparison

