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@ HEURISTICS

© 'LIMIT" SOLUTIONS
@ Existing notions of solutions
@ Proposed definition of Limit Solution
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@ HEURISTICS
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TWO MAIN QUESTIONS:

(A) Provide a NOTION OF SOLUTION x for
x = f(x,u, v)—i—Zga(x, u) i, t € [a,b]

a=1

such that:
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TWO MAIN QUESTIONS:

(A) Provide a NOTION OF SOLUTION x for
x = f(x,u, v)—i—Zga(x, u) i, t € [a,b]
a=1

such that:
i) xis £! and is defined for £! inputs u
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i) xis £! and is defined for £! inputs u
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TWO MAIN QUESTIONS:

(A) Provide a NOTION OF SOLUTION x for

x = f(x,u, v)—i—Zga(x, u) i, t € [a,b]

a=1

such that:
i) xis £! and is defined for £! inputs u
Here £! denotes the set of integrable maps defined everywhere
i) x subsumes former concepts of solution.
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TWO MAIN QUESTIONS:

(A) Provide a NOTION OF SOLUTION x for

x = f(x,u, v)—i—Zga(x, u) i, t € [a,b]

a=1

such that:

i) xis £! and is defined for £! inputs u
Here £' denotes the set of integrable maps defined everywhere
i) x subsumes former concepts of solution.

(B) Investigate possible occurrence Lavrentiev phenomenon in
relation to extension (A)
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APPLICATIONS of impulsive systems:

@ Spiking models of synaptic behaviour
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APPLICATIONS of impulsive systems:

@ Spiking models of synaptic behaviour

@ Mechanical systems using some coordinates as controls
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APPLICATIONS of impulsive systems:

@ Spiking models of synaptic behaviour
@ Mechanical systems using some coordinates as controls

@ In general, coupled fast-slow dynamics
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Underlying thought:

We can "accept” a notion of £! (or impulsive) trajectory

PROVIDED

it is, in some sense to be made precise, the LIMIT of faster and faster
trajectories
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Outline

© 'LIMIT" SOLUTIONS
@ Existing notions of solutions
@ Proposed definition of Limit Solution
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Existing notions of solutions
A "TRIVIAL” BUT IMPORTANT CASE

X =:U
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Existing notions of solutions
A "TRIVIAL” BUT IMPORTANT CASE

X =:U

@ For this equation one would like
x(t) = u(t) + x(0) vt e [0, T] (1)

to be a solution, which is obviously the case as soon as x, u € AC (=
absolutely continuous).
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@ For this equation one would like
x(t) = u(t) + x(0) vt e [0, T] (1)

to be a solution, which is obviously the case as soon as x, u € AC (=
absolutely continuous).
@ Another idea could be a distributional approach: BUT
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Existing notions of solutions
A "TRIVIAL” BUT IMPORTANT CASE

X =:U

@ For this equation one would like
x(t) = u(t) + x(0) vt e [0, T] (1)

to be a solution, which is obviously the case as soon as x, u € AC (=
absolutely continuous).

@ Another idea could be a distributional approach: BUT
1) it does cannot give pointwise information

July 8-12, 2014, Madrid, AIMS Conft;rence
37

EN T T Erose Rl ([ TRV QW WY RMWAVEL imit Solutions for Systems with Unboundec



Existing notions of solutions
A "TRIVIAL” BUT IMPORTANT CASE

X =:U

@ For this equation one would like
x(t) = u(t) + x(0) vt e [0, T] (1)

to be a solution, which is obviously the case as soon as x, u € AC (=
absolutely continuous).
@ Another idea could be a distributional approach: BUT
1) it does cannot give pointwise information
2) it is "wrong” in the general nonlinear case!(?)

July 8-12, 2014, Madrid, AIMS Conft;rence
37

EN TN ToE oL Rl ([ TRV QW WY RMWAYEL imit Solutions for Systems with Unboundec



Existing notions of solutions
A "TRIVIAL” BUT IMPORTANT CASE

X =:U

@ For this equation one would like
x(t) = u(t) + x(0) vt e [0, T] (1)

to be a solution, which is obviously the case as soon as x, u € AC (=
absolutely continuous).
@ Another idea could be a distributional approach: BUT
1) it does cannot give pointwise information
2) it is "wrong” in the general nonlinear case!(?)

e How to transform (1) into a definition when u,x € £ ?
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Existing notions of solutions
AVAILABLE NOTIONS OF SOLUTION FOR

x=f(x,u,v)+ Zga(x, u) iy,

a=1
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Existing notions of solutions
AVAILABLE NOTIONS OF SOLUTION FOR

x=f(x,u,v)+ Zga(x, u) iy,

a=1

There are at least TWO SITUATIONS for which a
good notion of solution does already exist:

July 8-12, 2014, Madrid, AIMS Conft;rence
37

EN T ToE oL Rl ([ TRV QW WV RMWAYEL imit Solutions for Systems with Unboundec



Existing notions of solutions
AVAILABLE NOTIONS OF SOLUTION FOR

x=f(x,u,v)+ Zga(x, u) iy,

a=1

There are at least TWO SITUATIONS for which a
good notion of solution does already exist:

o the commutative case

(8, 85] = 0
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Existing notions of solutions
AVAILABLE NOTIONS OF SOLUTION FOR

x=f(x,u,v)+ Zga(x, u) iy,

a=1

There are at least TWO SITUATIONS for which a
good notion of solution does already exist:

o the commutative case

(8, 85] = 0

e the non commutative case

[g, 5] # 0

with the controls u(-) having bounded variation
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Existing notions of solutions
x=f(x,u,v)+ > ga(x, u)i,

The commutative case
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Existing notions of solutions
x=f(x,u,v)+ > ga(x, u)i,

The commutative case
© Due to [ga, g3) = 0, by multiple flow-box theorem there exists a
(global) coordinates’'change

(x,u) — <f(x, u), z(x, u)) = <§(x, u), u)

such that the system becomes trivial:
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Existing notions of solutions
x=f(x,u,v)+ > ga(x, u)i,

The commutative case
© Due to [ga, g3) = 0, by multiple flow-box theorem there exists a
(global) coordinates’'change

(eu) = (€0 ) 2(x,u)) = (£(x,u),u)
such that the system becomes trivial:

é = F(t7 g? Z? V)

zZ=1u
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Existing notions of solutions
x=f(x,u,v)+ > ga(x, u)i,

The commutative case
© Due to [ga, g3) = 0, by multiple flow-box theorem there exists a
(global) coordinates’'change

(eu) = (€0 ) 2(x,u)) = (£(x,u),u)
such that the system becomes trivial:

é = F(t7 57 Z? V)

zZ=1u

@ set z(t) := u(t) and define the solution x(-) by using the inverse
change of coordinates:

x(t) = x(g(t),z(t))
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Existing notions of solutions
x=f(x,u,v)+ > ga(x, u)i,

The commutative case
© Due to [ga, g3) = 0, by multiple flow-box theorem there exists a
(global) coordinates’'change

(eu) = (€0 ) 2(x,u)) = (£(x,u),u)
such that the system becomes trivial:

é = F(t7 g? Z? V)

zZ=1u

@ set z(t) := u(t) and define the solution x(-) by using the inverse
change of coordinates:

x(t) = x(&(1), 2(1))
Notice: One has continuity of u — x with respect to L' topologies.
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Existing notions of solutions
x=f(x,u,v)+ > ga(x, u)i,

The commutative case
© Due to [ga, g3) = 0, by multiple flow-box theorem there exists a
(global) coordinates’'change

(eu) = (€0 ) 2(x,u)) = (£(x,u),u)
such that the system becomes trivial:

é = F(t7 57 Z? V)

zZ=1u

@ set z(t) := u(t) and define the solution x(-) by using the inverse
change of coordinates:

x(t) = x(g(t),z(t))

Notice: One has continuity of u — x with respect to L' topologies.
Actually, point-wise continuity on any E C [a, b] is also verified...
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"LIMIT” SOLUTIONS Existing notions of solutions

A. Bressan and F. Rampazzo. Impulsive control systems with commutative
vector fields. J. Optim. Theory Appl., 71, p.67-83, (1991).

A.V. Sarychev. Nonlinear systems with impulsive and generalized function
controls,vol. 9 of Progr. Systems Control Theory, p. 244-257, (1991).
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2l ol o exlife
x = f(x,u,v)+ E ga(X, )iy,

The noncommutative case
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2l ol o exlife
x = f(x,u,v)+ E ga(X, )iy,

The noncommutative case =non " trivializable”:
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Eih e o it
x = f(x,u,v)+ E ga(X, )iy,

The noncommutative case =non " trivializable”:

@ For AC (=absolutely continuous) controls u, one can reparameterize
time t(s) = @o(s) and set ¢(s) := uo g, P = v o ¢g, so obtaining
the equivalent system

t'(s) = ¥o(s)

Y'(5) = F(0, ¥, 0, 0)96(s) + D 8aly, u)@(s)

a=1
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Eih e o it
x = f(x,u,v)+ E ga(X, )iy,

The noncommutative case =non " trivializable”:

@ For AC (=absolutely continuous) controls u, one can reparameterize
time t(s) = @o(s) and set ¢(s) := uo g, P = v o ¢g, so obtaining
the equivalent system

(5) = o) )
Y'(5) = F(0, ¥, 0, 0)96(s) + D 8aly, u)@(s)

a=1

@ for BV(=bounded variation) controls u, let (¢o, ) be a graph
completions of v .
Namely:
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Eih e o it
x = f(x,u,v)+ E ga(X, )iy,

The noncommutative case =non "trivializable”:
@ For AC (=absolutely continuous) controls u, one can reparameterize
time t(s) = @o(s) and set ¢(s) := uo g, P = v o ¢g, so obtaining
the equivalent system

(5) = o) )
Y'(5) = F(0, ¥, 0, 0)96(s) + D 8aly, u)@(s)

a=1

@ for BV(=bounded variation) controls u, let (¢o, ) be a graph
completions of v .
Namely: one bridges the jumps of u and parameterize them on
s-subintervals where time t(s)(= ¢o(s)) is constant.
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"LIMIT” SOLUTIONS Existing notions of solutions

t'(s) = @o(s)

Y'(s) = £(00, ¥, 0, v 0 00)(5) + D _ 8aly, u) ot (s)

a=1

£ x() = y o 5 (8)

is called the graph-completion solution corresponting to the graph
completion (g, ) of u. It is set-valued on a countable subset of [a, b].
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"LIMIT” SOLUTIONS Existing notions of solutions

t'(s) = @o(s)

Y'(s) = £(00, ¥, 0, v 0 00)(5) + D _ 8aly, u) ot (s)

a=1

£ x() = y o 5 (8)

is called the graph-completion solution corresponting to the graph
completion (g, ) of u. It is set-valued on a countable subset of [a, b].

single-valued version:
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"LIMIT” SOLUTIONS Existing notions of solutions

t'(s) = @o(s)

Y'(s) = £(00, ¥, 0, v 0 00)(5) + D _ 8aly, u) ot (s)

a=1

£ x() = y o 5 (8)

is called the graph-completion solution corresponting to the graph
completion (g, ) of u. It is set-valued on a countable subset of [a, b].

single-valued version: If o : [0, T] — [0,1] is a Clock, i.e.
o(t) € (po, ) (t,u(t)), we say that

t = x:=yoo(t)

is a single-valued graph-completion solution.
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"LIMIT” SOLUTIONS Existing notions of solutions

t'(s) = ¢o(s)

Y'(s) = F(00, ¥, @, v 0 0) 5 (s) +Zga Y5 u)@h(s)

a=1

3
T/

ueBV
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"LIMIT” SOLUTIONS Existing notions of solutions

t'(s) = ¢o(s)

Y'(s) = F(00, ¥, @, v 0 0) 5 (s) +Zga Y5 u)@h(s)

a=1

graph completion
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"LIMIT” SOLUTIONS Existing notions of solutions

t'(s) = @o(s)

Y'(5) = F(0: ¥, v 0 00)26(5) + Y Baly, 1) 2i(s)

a=1

-
T/

Another
graph completion
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"LIMIT” SOLUTIONS Existing notions of solutions

t'(s) = ¢o(s)

Y'(s) = F(00, ¥, @, v 0 0) 5 (s) +Zga Y5 u)@h(s)

a=1

ez
T/
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"LIMIT” SOLUTIONS Existing notions of solutions
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"LIMIT” SOLUTIONS Existing notions of solutions

Bressan

Bressan- Rampazzo
Bressan-Mazzola
Briani-Zidani
Pereira-Vinter
Miller
Motta-Rampazzo
Camilli-Falcone
Motta-Sartori
Sarychev

Silva

Silva-Vinter
Zabic-Wolenski
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

A unified notion of solution x:
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

A unified notion of solution x:

Some requirements should be met:
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

A unified notion of solution x:

Some requirements should be met:

@ consistency with the Karatheodoris notion of solution for v € AC
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

A unified notion of solution x:

Some requirements should be met:
@ consistency with the Karatheodoris notion of solution for v € AC

@ x single-valued at each t;
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

A unified notion of solution x:

Some requirements should be met:
@ consistency with the Karatheodoris notion of solution for v € AC
@ x single-valued at each t;

@ existence of an output
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

A unified notion of solution x:

Some requirements should be met:
@ consistency with the Karatheodoris notion of solution for v € AC
@ x single-valued at each t;

@ existence of an output (and possibly uniqueness) for a given input u
(and v),
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

A unified notion of solution x:

Some requirements should be met:
@ consistency with the Karatheodoris notion of solution for v € AC
@ x single-valued at each t;
@ existence of an output (and possibly uniqueness) for a given input u
(and v),
o former definitions of solution for impulsive systems
subsumed by this extended notion
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Proposed definition of Limit Solution
"LIMIT SOLUTIONS"

M.S. Aronna and F. Rampazzo.
L' limit solutions for control systems

(accepted on JDE)
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Proposed definition of Limit Solution
LIMIT SOLUTIONS for

x = f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1
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Proposed definition of Limit Solution
LIMIT SOLUTIONS for

x = f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1

u e LY[a, b]; U), (and v € L)
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Proposed definition of Limit Solution
LIMIT SOLUTIONS for

x=f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1

u€ LY[a,b];U), (and v € L)
Definition
o A L map x:[a,b] = R"is a LIMIT SOLUTION if, for every

T € [a, b], there exists a sequence of absolutely continuous controls
(uf) such that

(s i )(7) = O ) ()] + 106 u) = ()l = 0,

v
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Proposed definition of Limit Solution
LIMIT SOLUTIONS for

x=f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1

u€ LY[a,b];U), (and v € L)
Definition
o A L map x:[a,b] = R"is a LIMIT SOLUTION if, for every

T € [a, b], there exists a sequence of absolutely continuous controls
(uf) such that

(e i )(7) = (6 u)(7)] + 10 ) — O u)llr = 0,
e SIMPLE LIMIT SOLUTION: if (u}) can be chosen independently
of 7, i.e. (uf) = (uk).

v
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Proposed definition of Limit Solution
LIMIT SOLUTIONS for

x=f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1

u€ LY[a,b];U), (and v € L)
Definition

@ A L' map x:[a,b] = R"is a LIMIT SOLUTION if, for every
T € [a, b], there exists a sequence of absolutely continuous controls
(uf) such that

(i wi) () = O, u) () + 11 (x5, wi) — (%, w)llr = 0,

e SIMPLE LIMIT SOLUTION: if (u}) can be chosen independently
of 7, i.e. (u]) = (ux).

o BV-SIMPLE LIMIT SOLUTION if the approximating inputs uy
have equibounded variation.

v
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Proposed definition of Limit Solution
THE COMMUTATIVE CASE, [g., gs] = 0
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Proposed definition of Limit Solution
THE COMMUTATIVE CASE, [g., gs] = 0

Theorem

e Existence and uniqueness For every control u € L' (and every
v € L1) there exists a unique limit solution of

x=f(x,u,v)+ Zga(x, u)iy, x(a)=x

a=1
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Proposed definition of Limit Solution
THE COMMUTATIVE CASE, [g., gs] = 0

Theorem

e Existence and uniqueness For every control u € L' (and every
v € L1) there exists a unique limit solution of

x=f(x,u,v)+ Zga(x, u)iy, x(a)=x
a=1

e Continuous dependence: for every 7 € [a, b] one has

x1(7) = x2(T)| + [Ix1 — xal1 <
M[I>‘<1 —Xo| + |u1(a) — w2(a)| + un(t) — wa(t)] + [Jur — UzHl]-
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Proposed definition of Limit Solution
THE COMMUTATIVE CASE, [g., gs] = 0

Theorem

e Existence and uniqueness For every control u € L' (and every
v € L1) there exists a unique limit solution of

x=f(x,u,v)+ Zga(x, u)iy, x(a)=x
a=1

e Continuous dependence: for every 7 € [a, b] one has

x1(7) = x2(T)| + [Ix1 — xal1 <
M[I>‘<1 —Xo| + |u1(a) — w2(a)| + un(t) — wa(t)] + [Jur — UzHl]-

moreover: one has continuous dependence w.r. to the standard control v(-)
in L* norm
FACT:The limit solution coincides with the solution previously given via
change of coordinates.
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Proposed definition of Limit Solution
THE COMMUTATIVE CASE, [g., gs] = 0

Theorem

e Existence and uniqueness For every control u € L' (and every
v € L1) there exists a unique limit solution of

x=f(x,u,v)+ Zga(x, u)iy, x(a)=x
a=1

e Continuous dependence: for every 7 € [a, b] one has

x1(7) = x2(T)| + [Ix1 — xal1 <
M[I>‘<1 —Xo| + |u1(a) — w2(a)| + un(t) — wa(t)] + [Jur — UzHl]-

moreover: one has continuous dependence w.r. to the standard control v(-)
in L* norm
FACT:The limit solution coincides with the solution previously given via
change of coordinates. This is encouraging...
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

A worked out example of limit solution
X =xv+xiu, x(0)=x,

on the interval [0, 1], with v(t) := X[o,1/2[
Consider the £ control

u(t) = (1)L, forte[l—4,1— 5[, keN,
) 0, for t = 1.

The limit solution x is given by

xet, for t € [0, 3],
- xel/2e2, for t € [Ji,[1 - 2k’ 1- 5l
x(t) = xel/2,  fort € U2 [l - 1-

[
2k+2 i
xe / 3 IO t— 1.

2k+1’
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

A worked out example of limit solution
X =xv+xiu, x(0)=x,

on the interval [0, 1], with v(t) := X[o,1/2[
Consider the £ control

u(t) = (1)L, forte[l—4,1— 5[, keN,
) 0, for t = 1.

The limit solution x is given by

xet, for t € [0, %[,
(t) == xel2e7?, fort € Uply[l - 2.1~ mtl;
= xel/2,  fort € U2 [l - 2,(Jrl,l—ﬁ[,
xe Y2 fort=1.

Notice that both u and x have infinitely many discontinuities, unbounded
variation, and are defined everywhere.
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Proposed definition of Limit Solution
THE GENERIC, NON COMMUTATIVE, CASE

x = f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1
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Proposed definition of Limit Solution
THE GENERIC, NON COMMUTATIVE, CASE

x=f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1

u € LY([a,b]; U), (and v € L)
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Proposed definition of Limit Solution
THE GENERIC, NON COMMUTATIVE, CASE

x = f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1

u € LY([a,b]; U), (and v € L)
@ Existence of limit solutions?
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Proposed definition of Limit Solution
THE GENERIC, NON COMMUTATIVE, CASE

x = f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1

u € LY([a,b]; U), (and v € L)
@ Existence of limit solutions?

o Existence of simple limit solutions, possibly BV?
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Proposed definition of Limit Solution
THE GENERIC, NON COMMUTATIVE, CASE

x=f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1

u € LY([a,b]; U), (and v € L)
o Existence of limit solutions?
o Existence of simple limit solutions, possibly BV?

@ Uniqueness?
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Proposed definition of Limit Solution
THE GENERIC, NON COMMUTATIVE, CASE

x=f(x,u,v)+ Zga(x, u)i,, x(a)=x
a=1

u € LY([a,b]; U), (and v € L)
o Existence of limit solutions?
o Existence of simple limit solutions, possibly BV?

@ Uniqueness?
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Proposed definition of Limit Solution
x = f(x,u,v)+ E ga(x, )i, x(a)=x
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Proposed definition of Limit Solution
x = f(x,u,v)+ E ga(x, )i, x(a)=x

Let us focus on BV-simple limit solutions (for u € BV ), i.e. pointwise limit
of regular solutions corresponding to inputs with equibounded variation.
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Proposed definition of Limit Solution
x = f(x,u,v)+ E ga(x, )i, x(a)=x

Let us focus on BV-simple limit solutions (for u € BV ), i.e. pointwise limit
of regular solutions corresponding to inputs with equibounded variation.

QUESTION:
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Proposed definition of Limit Solution
x = f(x,u,v)+ E ga(x, )i, x(a)=x

Let us focus on BV-simple limit solutions (for u € BV ), i.e. pointwise limit
of regular solutions corresponding to inputs with equibounded variation.

QUESTION: Do they share some feature with graph-completion solutions?
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Proposed definition of Limit Solution
x = f(x,u,v)+ E ga(x, )i, x(a)=x

Let us focus on BV-simple limit solutions (for u € BV ), i.e. pointwise limit
of regular solutions corresponding to inputs with equibounded variation.

QUESTION: Do they share some feature with graph-completion solutions?

YES
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Proposed definition of Limit Solution
x = f(x,u,v)+ E ga(x, )i, x(a)=x

Let us focus on BV-simple limit solutions (for u € BV ), i.e. pointwise limit
of regular solutions corresponding to inputs with equibounded variation.

QUESTION: Do they share some feature with graph-completion solutions?

YES, ...actually they are the same object:
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Proposed definition of Limit Solution
x = f(x,u,v)+ E ga(x, )i, x(a)=x

Let us focus on BV-simple limit solutions (for u € BV ), i.e. pointwise limit
of regular solutions corresponding to inputs with equibounded variation.

QUESTION: Do they share some feature with graph-completion solutions?

YES, ...actually they are the same object:
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Theorem
x a (single-valued) graph completion solution

[

x is a BV-simple limit solution.

Main ingredients of the proof:
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Theorem
x a (single-valued) graph completion solution

[

x is a BV-simple limit solution.

Main ingredients of the proof:

° ﬂ (more or less known): pointwise density for increasing maps plus
reparameterizations;
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Theorem
x a (single-valued) graph completion solution

[

x is a BV-simple limit solution.

Main ingredients of the proof:

° ﬂ (more or less known): pointwise density for increasing maps plus
reparameterizations;
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Theorem
x a (single-valued) graph completion solution

[

x is a BV-simple limit solution.

Main ingredients of the proof:

° ﬂ (more or less known): pointwise density for increasing maps plus
reparameterizations;

° ﬂ (new) : compactness, by Helly's and Ascoli-Arzela's theorem, plus
ad hoc approximation tecgniques.
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Proposed definition of Limit Solution
EXISTENCE of BV-SIMPLE LIMIT SOLUTIONS for

x = F(x,u,v) + Y galx win,  x(3) =
a=1

for a given u € BV

I
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Proposed definition of Limit Solution
EXISTENCE of BV-SIMPLE LIMIT SOLUTIONS for

x = F(x,u,v) + Y galx win,  x(3) =
a=1

for a given u € BV

I

Observe preliminarly that the question is not obvious even for the trivial
equation

Indeed:
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Proposed definition of Limit Solution
EXISTENCE of BV-SIMPLE LIMIT SOLUTIONS for

x = F(x,u,v) + Y galx win,  x(3) =
a=1

for a given u € BV

I

Observe preliminarly that the question is not obvious even for the trivial
equation

Indeed:

claiming (as we do) that x(t) = u(t), t € [a, b], would mean that the BV
map v : [a,b] — IR™ can be approximated pointwise by a sequence of
absolutely continuous maps u, with Var(u,) < L.
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Proposed definition of Limit Solution
EXISTENCE of BV-SIMPLE LIMIT SOLUTIONS for

x = F(x,u,v) + Y galx win,  x(3) =
a=1

for a given u € BV

I

Observe preliminarly that the question is not obvious even for the trivial
equation

Indeed:

claiming (as we do) that x(t) = u(t), t € [a, b], would mean that the BV
map v : [a,b] — IR™ can be approximated pointwise by a sequence of
absolutely continuous maps u, with Var(u,) < L.

(This is not straightforward: consider e.g. a BV map with a dense set of
discontinuities)
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Theorem

Let U have the Whitney property.
For any control pair

(u,v) € BV([a,b]; U) x L([a, b]; V)

there exists a BV-simple limit solution.
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Theorem

Let U have the Whitney property.
For any control pair

(u,v) € BV([a,b]; U) x L([a, b]; V)

there exists a BV-simple limit solution.

Remark: In view of the previous result this establishes also EXISTENCE
for GRAPH COMPLETION SOLUTIONS

(DEFINITION: An arc-wise connected set U has the Whitney property if
d(x,y) < M|x — y|, where d is the geodesic distance.)
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Theorem

Let U have the Whitney property.
For any control pair

(u,v) € BV([a,b]; U) x L([a, b]; V)

there exists a BV-simple limit solution.

Remark: In view of the previous result this establishes also EXISTENCE
for GRAPH COMPLETION SOLUTIONS

(DEFINITION: An arc-wise connected set U has the Whitney property if
d(x,y) < M|x — y|, where d is the geodesic distance.)
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Proposed definition of Limit Solution
CONSISTENCY with Karatheodoris solutions x¢
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Proposed definition of Limit Solution
CONSISTENCY with Karatheodoris solutions x¢

Let u € AC.
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Proposed definition of Limit Solution
CONSISTENCY with Karatheodoris solutions x¢

Let u € AC.
Clearly the Karatheodoris solution x¢ of

x = f(x,u,v)+ Z:ga(x7 u)ie, x(a)=x

a=1

is a (BV-uniform) limit solution.
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Proposed definition of Limit Solution
CONSISTENCY with Karatheodoris solutions x¢

Let u € AC.
Clearly the Karatheodoris solution x¢ of

x = f(x,u,v)+ Z:ga(x7 u)ie, x(a)=x

a=1

is a (BV-uniform) limit solution.

Question:
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Proposed definition of Limit Solution
CONSISTENCY with Karatheodoris solutions x¢

Let u € AC.
Clearly the Karatheodoris solution x¢ of

x = f(x,u,v)+ Z:ga(x7 u)ie, x(a)=x

a=1

is a (BV-uniform) limit solution.

Question:

Is the Karatheodoris solution xc the ONLY limit solution?
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Proposed definition of Limit Solution
CONSISTENCY with Karatheodoris solutions x¢

Let u € AC.
Clearly the Karatheodoris solution x¢ of

x = f(x,u,v)+ Z:ga(x7 u)ie, x(a)=x

a=1

is a (BV-uniform) limit solution.

Question:

Is the Karatheodoris solution xc the ONLY limit solution?
NO.
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Proposed definition of Limit Solution
CONSISTENCY with Karatheodoris solutions x¢

Let u € AC.
Clearly the Karatheodoris solution x¢ of

x="f(x,u,v)+ Z:ga(x7 u)ly, x(a)=x
a=1

is a (BV-uniform) limit solution.

Question:

Is the Karatheodoris solution xc the ONLY limit solution?
NO.
For instance
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Counterexample to uniqueness

x = gi(x)in + g(x)in, x(0)=0.
gl(x) = (1,0,X2), gg(X) = (0, 1, *Xl), SO [gl,gg] == (0,0, *2).
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Counterexample to uniqueness

x = g1(x)in + g2(x)in, x(0)=0.
gl(X) = (1’ 07X2)a g2(X) = (Oa 1a 7X1)’ SO [g17g2] = (0707 72)
Of course the Karatheodoris solution corresponding to u = (0,0) is

xc(t) = (0,0,0)
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Counterexample to uniqueness

x = g1(x)in + g2(x)in, x(0)=0.
gl(X) = (1’ 07X2)a g2(X) = (Oa 1a 7X1)’ so [g17g2] = (0707 72)
Of course the Karatheodoris solution corresponding to u = (0,0) is
xc(t) = (0,0,0)

On the other hand, the input
ug(t) := (k=12 cos kt — 1, k=1/2 sin kt)
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Counterexample to uniqueness

x = g1(x)in + g2(x)in, x(0)=0.
gl(X) = (1’ 07X2)a g2(X) = (Oa 1, *Xl)a SO [g17g2] = (0707 72)
Of course the Karatheodoris solution corresponding to u = (0,0) is
xe(t) = (0,0,0)
On the other hand, the input
ug(t) := (k=12 cos kt — 1, k=1/2 sin kt) generates the trajectory

xe(t) = (kY2 cos kt — 1, k=12 sin kt, —t + kL sin kt)t.
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Counterexample to uniqueness

x = g1(x)in + g2(x)in, x(0)=0.
gl(X) = (1’ 0)X2)a g2(X) = (Oa 1, *Xl)a SO [g17g2] = (0707 72)
Of course the Karatheodoris solution corresponding to u = (0,0) is
xe(t) = (0,0,0)
On the other hand, the input
ug(t) := (k=12 cos kt — 1, k=1/2 sin kt) generates the trajectory

xe(t) = (kY2 cos kt — 1, k=12 sin kt, —t + kL sin kt)t.
Since u(t) = (0,0), xk(t) — (0,0,—t)%, uniformly, the map
£(t) :=(0,0,—t)*

is a (simple) limit solution.
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Counterexample to uniqueness

x = g1(x)in + g2(x)in, x(0)=0.
gl(X) = (1’ 0)X2)a g2(X) = (Oa 1, *Xl)a SO [g17g2] = (0707 72)
Of course the Karatheodoris solution corresponding to u = (0,0) is
xe(t) = (0,0,0)
On the other hand, the input
ug(t) := (k=12 cos kt — 1, k=1/2 sin kt) generates the trajectory

xe(t) = (kY2 cos kt — 1, k=12 sin kt, —t + kL sin kt)t.
Since u(t) = (0,0), xk(t) — (0,0,—t)%, uniformly, the map
£(t) :=(0,0,—t)*

is a (simple) limit solution. In particular X # x¢
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Counterexample to uniqueness

x = g1(x)in + g2(x)in, x(0)=0.
gl(X) = (1’ 0)X2)a g2(X) = (Oa 1, *Xl)a SO [g17g2] = (0707 72)
Of course the Karatheodoris solution corresponding to u = (0,0) is
xe(t) = (0,0,0)
On the other hand, the input
ug(t) := (k=12 cos kt — 1, k=1/2 sin kt) generates the trajectory

xe(t) = (kY2 cos kt — 1, k=12 sin kt, —t + kL sin kt)t.
Since ug(t) — (0,0), xk(t) — (0,0, —t)*, uniformly, the map
L(t) := (0,0, —t)"
is a (simple) limit solution. In particular X # x¢

NOTICE THAT Var(uy) — +oo
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Counterexample to uniqueness

x = g1(x)in + g2(x)in, x(0)=0.
gl(X) = (1’ 0)X2)a g2(X) = (Oa 1, *Xl)a SO [g17g2] = (0707 72)
Of course the Karatheodoris solution corresponding to u = (0,0) is
xe(t) = (0,0,0)
On the other hand, the input
ug(t) := (k=12 cos kt — 1, k=1/2 sin kt) generates the trajectory

xe(t) = (kY2 cos kt — 1, k=12 sin kt, —t + kL sin kt)t.
Since ug(t) — (0,0), xk(t) — (0,0, —t)*, uniformly, the map
L(t) := (0,0, —t)"
is a (simple) limit solution. In particular X # x¢

NOTICE THAT Var(uy) — +oo  (BUT...
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Proposed definition of Limit Solution
CONSISTENCY with Karatheodoris solutions x¢

ue AC
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Proposed definition of Limit Solution
CONSISTENCY with Karatheodoris solutions x¢

ue AC
THEOREM.
Let X € AC be a BV-uniform limit solution of

x = f(x,u,v)+ Zga(x, u)ie, x(a)=x.

a=1

Then X = x¢
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THEOREM.
Let X € AC be a BV-uniform limit solution of

x = f(x,u,v)+ Zga(x, u)ie, x(a)=x.

a=1

Then X = x¢

Remark : By the previous example, the fact that X is a smooth simple
limit solution does not imply that x is a Karatheodoris solution.
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

SOME PROBLEMS:
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SOME PROBLEMS:

© Do Lavrentiev type phenomena occur? (upcoming paper with
M.S.Aronna and M. Motta).
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YES, in the presence of a final constraint x(b) € S. A sufficient
condition to avoid Lavrentiev gap is Quick Reachability

@ C(lassify other classes of solutions with unbounded variation.
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

SOME PROBLEMS:

© Do Lavrentiev type phenomena occur? (upcoming paper with
M.S.Aronna and M. Motta).

NO, in the unconstrained case

YES, in the presence of a final constraint x(b) € S. A sufficient
condition to avoid Lavrentiev gap is Quick Reachability

@ C(lassify other classes of solutions with unbounded variation.
© Necessary conditions for minimum problems, Hamilton-Jacobi

© Compactness, existence of minima
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"LIMIT” SOLUTIONS Proposed definition of Limit Solution

Many thanks for your patience
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Proposed definition of Limit Solution
The BUT... stuff

x = gi(x)in + g(x)in, x(0)=0.
gl(X) = (1707X2)7 gZ(X) = (O’ 1, _Xl)a SO [g17g2] = (O?O? _2)'
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Proposed definition of Limit Solution
The BUT... stuff

x = g1(x)in + g2(x)in, x(0)=0.
g1(x) = (1,0,x), g(x):=(0,1,—x1), so [g1,8]=(0,0,-2).
Karatheodorfs solution corresponding to u = (0,0) is : x¢(t) = (0,0,0)
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Proposed definition of Limit Solution
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x = gi(x)in + g(x)in, x(0)=0.
gl(X) = (1707X2)7 gZ(X) = (0’ 1, _Xl)a SO [g17g2] = (O?O? _2)'

Karatheodorfs solution corresponding to u = (0,0) is : x¢(t) = (0,0,0)
ug(t) := (k=12 cos kt — 1, k=1/2 sin kt)
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x = gi(x)in + g(x)in, x(0)=0.
gl(X) = (1707X2)7 gZ(X) = (0’ 1, _Xl)a SO [g17g2] = (O?O? _2)'

Karatheodoris solution corresponding to u = (0,0) is : x¢(t) = (0,0,0)
ug(t) := (k=1/2 cos kt — 1, k=1/2 sin kt) generates the trajectory

xk(t) = (k=2 cos kt — 1, k=2 sin kt, —t + k=L sin kt)t.

xi(t)tox(t) := (0,0, —t)*

so X is a (simple) limit solution.
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ug(t) := (k=1/2 cos kt — 1, k=1/2 sin kt) generates the trajectory

xk(t) = (k=2 cos kt — 1, k=2 sin kt, —t + k=L sin kt)t.

xk(t)tox(t) := (0,0, —t)*
so X is a (simple) limit solution. In particular X # x¢

Notice that Var(uk) = [5 |ik|dt — +oo
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The BUT... stuff

x = gi(x)in + g(x)in, x(0)=0.
gl(X) = (1707X2)7 gZ(X) = (O’ 1, _Xl)’ SO [g17g2] = (O?O? _2)'

Karatheodoris solution corresponding to u = (0,0) is : x¢(t) = (0,0,0)
ug(t) := (k=1/2 cos kt — 1, k=1/2 sin kt) generates the trajectory

xk(t) = (k=2 cos kt — 1, k=2 sin kt, —t + k=L sin kt)t.

xk(t)tox(t) := (0,0, —t)*
so X is a (simple) limit solution. In particular X # x¢

Notice that Var(uk) fo |Uk|dt — +00  BUT... the iterated integral

1
JRC R
0
IS BOUNDED as k goes to cc.
Limit Solutions for Systems with Unboundec

July 8-12, 2014, Madrid, AIMS Conft;n;nce
7



"LIMIT” SOLUTIONS Proposed definition of Limit Solution

TRUE END OF THE TALK

THANKS AGAIN
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