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Original Problem

Consider the Optimal Control Problem:

(P )


minimize g(x(0), x(1))
over the x ∈W1,1([0,1]; Rn) s.t.
ẋ(t) ∈ F (t, x(t)) a.e.
(x(0), x(1)) ∈ C

• (H1) : C ⊂ Rn × Rn is closed and g : Rn × Rn → Rn
is locally Lipschitz continuous;

• (H2) : F (·, ·) takes values closed sets and F (·, x) is
measurable for each x;
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• For a nominal trajectory x̄(.)

(H3) : There exist k(.), c(.) ∈ L1, and ε > 0 s.t.:

I) F (t, x) ⊂ F (t, x′) + k(t)|x− x′|B

II) F (t, x) ⊂ c(t)B

for all x, x′ ∈ x̄(t) + εB, a.e. t ∈ [0,1].

Define the maximized Hamiltonian:

H(t, p, x) = max
v∈F (t,x)

(p · v)
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Local minimizers

An F -trajectory x̄(.) is a strong local minimizer for (P )
if, for ε > 0,

g(x̄(0), x̄(1)) ≤ g(x(0), x(1))

for every

||x(.)− x̄(.)||L∞ ≤ ε .

x̄(.) is a weak local minimizer if

g(x̄(0), x̄(1)) ≤ g(x(0), x(1))

for every

||x(.)− x̄(.)||W1,1 ≤ ε .
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Existence of a Minimizer

Theorem: Suppose hypotheses (H1), (H2) and (H3)

and assume, furthermore, the following conditions:

• if we write C = C0 × C1, then or C0 either C1 is

bounded;

• the multifunction x 7→ F (t, x) has convex value a.e.

t ∈ [0,1].

Then (P ) has a minimizer.
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Relaxed Control Problem

Let’s introduce the relaxed problem:

(R)


minimize g(x(0), x(1))
over the x ∈W1,1([0,1]; Rn) s.t.
ẋ(t) ∈ coF (t, x(t)) a.e.
(x(0), x(1)) ∈ C

Relaxation Theorem: Assume the hypotheses (H1)−
(H3) and take any coF -trajectory x and a δ > 0. Then

there exists an F -trajectory y such that satisfies y(0) =

x(0) and

max
t∈[0,1]

|y(t)− x(t)| < δ.
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Reachable Set Interpretation

Define the original Reachable set

R := {(x(0), x(1)) : ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [0,1]},

and the relaxed Reachable set

S := {(x(0), x(1)) : ẋ(t) ∈ coF (t, x(t)) a.e. t ∈ [0,1]}.

Then it turns out that

R̄ = S.
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Why is Relaxation useful?

A standard relaxation procedure concerns:

• Step 1: Solve the relaxed problem (which always

has a solution).

• Step 2: Approximate the solution to the relaxed

problem as closely as required to obtain a sub-

optimal solution to the original problem.
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Infimum Gap

The relaxation procedure works if we assume that:

inf{P} = inf{R}.

But, in certain pathological situations, it could happen

that

inf{P} > inf{R}. (1)

These situations are problematic because we cannot

obtain a suboptimal minimizers for (P). Furthermore,

we encounter also a breakdown of the Dynamic Pro-

gramming method and HJB approach.
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Infimum Gap: An Example

Consider the problem:

(E)



Minimize − x1(1)
over x(.) = (x1(.), x2(.), x3(.)) satisfying
ẋ1(t) = 0
ẋ2(t) = x1(t)u(t)
ẋ3(t) = |x2(t)|2
u(t) ∈ U(t) ≡ {−1} ∪ {+1}
x2(0) = x3(0) = x3(1) = 0 .

It turns out that x̄(.) = (0,0,0) is an original strong
local minimizer but is not also a relaxed minimizer. In-
deed, every trajectory x̃(.) = (α,0,0) is a relaxed strong
local minimizer for the bound

||x(.)||L∞ ≤ α
.
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Abnormality of Multipliers

A trajectory x̄(.) is abnormal if there exists a couple

(λ, p(.)) which satisfies some set of Necessary Condi-

tions with λ = 0.

We relate the ”infimum gap” (1) to abnormality of

multipliers.

Assume ”infimum gap” (1). Then

(Type A): Any original minimizers for (P) is abnor-

mal.

(Type B): Any relaxed trajectory which satisfies (1)

is abnormal.
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Some Results

Type A Theorem (Palladino-Vinter), 2013

Let x̄(·) be a strong local minimizing F−trajectory for

(P ). Assume (H1), (H2) and (H3).

Suppose that x̄(.) is not also a minimizer for (R).

Then there exists p(·) ∈W1,1([0,1]; Rn) such that:

i) ((λ = 0), p(·)) 6= (0,0);

ii) (−ṗ(t), ˙̄x(t)) ∈ co∂x,pH(t, x̄(t), p(t)) a.e.;

iii) (p(0),−p(1)) ∈ (λ = 0)∂g(x̄(0), x̄(1))+NC(x̄(0), x̄(1)).
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Type B Theorem (Palladino-Vinter), 2013

Let x̄(·) be a feasible coF−trajectory. Assume (H1),

(H2) and (H3). Suppose also

(H4) : there exist ε > 0 and δ > 0 such that

g(x(0), x(1)) > g(x̄(0), x̄(1)) + δ

for every feasible F−trajectory x(·) such that

||x(·)− x̄(·)||∞ ≤ ε.

Then there exists p(·) ∈W1,1([0,1]; Rn) such that

i) ((λ = 0), p(·)) 6= (0,0);

ii) (−ṗ(t), ˙̄x(t)) ∈ co∂x,pH(t, x̄(t), p(t)) a.e.;

iii) (p(0),−p(1)) ∈ (λ = 0)∂g(x̄(0), x̄(1))+NC(x̄(0), x̄(1)).
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Sketch of the Proof for Type B Th.

• Use the Relaxation Theorem to define an original
(non feasible) sequence xi → x̄ in L∞.

• Construct a sequence of perturbed problems (re-
spect to xi) and use the Stegall’s Variational Prin-
ciple.

• Pass to the limit in the Clarke’s Hamiltonian N. C.

Type B Th. =⇒ Type A Th.
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Remarks

If we look at the contrapositive statement of the

Type A Theorem, it follows that normality of the min-

imizer implies the equality

inf{P} = inf{R}.

Hence, normality of a local minimizer is a sufficient

condition in order to carry out relaxation procedure of

numerical schemes for control problems.

Theory easily adapts to allow state constraints of the

form h(t, x(t)) ≤ 0 for every t ∈ [0,1].
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Research Questions

• Are the theorems true if we consider weak neigh-
borhood as

||x(.)− x̄(.)||W1,1 ≤ ε ?

• Are they valid also for other N. C. involving different
adjoint equations like

ṗ(t) ∈ co{q : (q, p(t)) ∈ NGrF (t,.)(x̄(t), ˙̄x(t))}
or

−ṗ(t) ∈ co{q : (q, ˙̄x(t)) ∈ ∂x,pH(t, x̄(t), p(t))}?
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Concerning the above open questions, Ioffe claimed:

’Suppose that x̄(.) is a local W1,1 minimizer which is

normal with respect to

ṗ(t) ∈ co{q : (q, p(t)) ∈ NGrF (t,.)(x̄(t), ˙̄x(t))}

Then x̄(.) is also a W1,1-relaxed minimizer’.

(A. D. Ioffe - Euler Lagrange and Hamiltonian For-

malisms in Dynamic Optimization, 1997)’
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This claim, as stated, is incorrect. This is illustrated

by the following counter-example . . .

In fact, our work reveals, to correct Ioffe’s assertion, we

need to consider normality w.r.t. the Hamiltonian

inclusion, and consider local optimality w.r.t. the

L∞ norm.
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Counterexample

(R. Vinter), 2013

Consider the probem:

(E)



Minimize
(

1
2x1(1)− x2(1)

)
over abs. cont. x(.) = (x1(.), x2(.), x3(.)) s.t. ẋ1(t)
ẋ2(t)
ẋ3(t)

 ∈
 0
x1(t)

1

 ∪
 0
x1(t)
−1

 ∪
 0

min{x1(t),0}
0


(x1(0), x2(0), x3(0)) ∈ [0,∞)× {0} × {0},

(x1(1), x2(1), x3(1)) ∈ R× R× R
20
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It turns out that:

• Since (E) is free endpoint constraint, then the so-
lutions are normal;

• x̄(.) = (0,0,0) is a weak local minimizer for (E)
with ||x(.)||W1,1 ≤ ε < 1/2;

• The coF -trajectory x̃(.), determined by x̃(0) = (ε/2
√

3,0,0)
and ˙̃x(t) = (0, ε/2

√
3,0) is feasible and yields a cost

less than 0.

Then x̄(.) = (0,0,0) is not also a relaxed minimizer.
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To Summarize...

Normality for (P ) with
Fully Convexified Hamiltonian N.C.

⇒ inf{P} = inf{R}
in the L∞ norm

Normality for (P ) with
Partially Convexified Hamiltonian N.C.

6⇒ inf{P} = inf{R}
in the W1,1 norm

Normality for (P ) with
Extended Euler Lagrange N.C.

6⇒ inf{P} = inf{R}
in the W1,1 norm
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Open Research Question

Consider the problem:

(P )



minimize g(x(0), x(1))
over the absolutely continuos arcs x(·)
and the measurable control functions u(·) s.t.
ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0,1]
u(t) ∈ U(t) a.e. t ∈ [0,1]
(x(0), x(1)) ∈ C

Warga proved a Type B Theorem for a Nonsmooth

Maximum principle.

Is the Type A Theorem also true?
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If we assume the dynamic has the structure

f(t, x, u) := A(t, x) +B(t, x)u

with

det(B(t, x)BT (t, x)) 6= 0,

for every x, a.e. t ∈ [0,1], then a Type A theorem is

valid for the Nonsmooth P.M.P. with adjoint equation

−ṗ(t) ∈ co ∂xh(t, x̄(t), ū(t), p(t)) a.e.
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