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Original Problem

Consider the Optimal Control Problem:

/

minimize g(xz(0),x(1))

(py 1 over thez € W11([0,1]; R™) s.t.
z(t) € F(t,z(t)) a.e.

| (2(0),z(1)) € C

e (H1): C C R"x R"™ is closed and g : R" x R* — R"
is locally Lipschitz continuous;

e (H2): F(-,-) takes values closed sets and F(-,x) is
measurable for each zx;



e For a nominal trajectory z(.)
(H3) : There exist k(.),e(.) € L1, and € > 0 s.t.:
I) F(t,x) C F(t,z") + k(t)|x — 2'|B

1) F(t,z) C c(t)B
for all xz,2’ € z(t) + B, a.e. t € [0, 1].

Define the maximized Hamiltonian:

H(tap7 x) — ’UGrTF]’?tXZU) (p ) ’U)



l.ocal minimizers

An F-trajectory z(.) is a strong local minimizer for (P)
if, for e > 0,

9(z(0),z(1)) < g(z(0),z(1))

for every

2() — ()|l <.

z(.) is a weak local minimizer if

9(z(0),z(1)) < g(z(0),z(1))

for every

2() — ()l <.



Existence of a Minimizer

Theorem: Suppose hypotheses (H1), (H2) and (H3)
and assume, furthermore, the following conditions:

o if we write ' = (Cy x (1, then or Cy either C; is
bounded;

e the multifunction = — F(¢,z) has convex value a.e.
t €[0,1].

Then (P) has a minimizer.



Relaxed Control Problem

Let's introduce the relaxed problem:

[ minimize g(x(0),x(1))
over the z € Wh1i([0, 1]; R") s.t.
z(t) € coF(t,z(t)) a.e.

| (z(0),z(1)) € C

(R)

N\

Relaxation Theorem: Assume the hypotheses (H1) —
(H3) and take any coF-trajectory x and a 6 > 0. Then
there exists an F-trajectory y such that satisfies y(0) =
x(0) and

t) —x(t 0.
max [y(1) — ()] <



Reachable Set Interpretation

Define the original Reachable set
R :={(x(0),x(1)) : z(t) € F(t,x(t))a.e.t € [0,1]},
and the relaxed Reachable set
S = {(x(0),x(1)) : z(t) € cOF(t,x(t)) a.e.t € [0,1]}.
Then it turns out that
R =S.



Why is Relaxation useful?

A standard relaxation procedure concerns:

e Step 1: Solve the relaxed problem (which always
has a solution).

e Step 2: Approximate the solution to the relaxed
problem as closely as required to obtain a sub-
optimal solution to the original problem.



Infimum Gap

The relaxation procedure works if we assume that:
inf{P} = inf{R}.

But, in certain pathological situations, it could happen
that

inf{P} > inf{R}. (1)

These situations are problematic because we cannot
obtain a suboptimal minimizers for (P). Furthermore,
we encounter also a breakdown of the Dynamic Pro-
gramming method and HJB approach.



REACHABLE SET

LEGEND:

- X initial point for the dynamic
- g(x) value cost for (P)

- g(x') value cost for (Prei)



Infimum Gap: An Example

Consider the problem:

( Minimize — x1(1)
over z(.) = (x1(.),x2(.),x3(.)) satisfying
21(t) =0
(E) { z2(t) = z1(t)u(l)

23(t) = |z2(t)|?

u(t) eU@) ={-1} U {+1}
| 72(0) = z3(0) = x3(1) =0.
It turns out that x(.) = (0,0,0) is an original strong
local minimizer but is not also a relaxed minimizer. In-
deed, every trajectory Z(.) = («,0,0) is a relaxed strong
local minimizer for the bound

()| Le < @

10



Abnormality of Multipliers

A trajectory z(.) is abnormal if there exists a couple
(A, p(.)) which satisfies some set of Necessary Condi-
tions with A = 0.

We relate the ”infimum gap” (1) to abnormality of
multipliers.

Assume "infimum gap” (1). Then
(Type A): Any original minimizers for (P) is abnor-
mal.

(Type B): Any relaxed trajectory which satisfies (1)
is abnormal.
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Some Results
Type A Theorem (Palladino-Vinter), 2013
Let z(-) be a strong local minimizing F—trajectory for

(P). Assume (H1), (H2) and (H3).
Suppose that z(.) is not also a minimizer for (R).

Then there exists p(-) € Wh1([0,1]; R") such that:
i) ((A=0),p(-)) # (0,0);
it) (—p(t),z(t)) € codz pH(t,z(t),p(t)) a.e;

i) (p(0), —p(1)) € (A = 0)9g(z(0),z(1))+Nc(z(0),z(1)).
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Type B Theorem (Palladino-Vinter), 2013
Let z(-) be a feasible coF—trajectory. Assume (H1),
(H2) and (H3). Suppose also

(H4) : there exist e > 0 and § > O such that
g(x(0),z(1)) > g(z(0),z(1)) + ¢

for every feasible F'—trajectory x(-) such that
z(-) —Z()||loo <&

Then there exists p(-) € W11([0, 1]; R"®) such that
i) ((A=0),p(-)) # (0,0);

it) (—p(t),x(t)) € codz pH(t,z(t),p(t)) a.e,;

i) (p(0), —p(1)) € (A = 0)9g(z(0),z(1))+Nc(z(0),z(1)).
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Reachable set

cost

I

I

I

I

I

X
0

X is locally minimizing trajectory

Constraint: x = X
0 0
X is relaxed feasible trajectory

Type A Theorem Type B Theorem
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Sketch of the Proof for Type B Th.

e Use the Relaxation Theorem to define an original
(non feasible) sequence x; —  in L°.

e Construct a sequence of perturbed problems (re-
spect to z;) and use the Stegall’'s Variational Prin-

ciple.

e Pass to the limit in the Clarke's Hamiltonian N. C.

Type B Th. — Type A Th.
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Remarks

If we look at the contrapositive statement of the
Type A Theorem, it follows that normality of the min-
imizer implies the equality

inf{P} = inf{R}.

Hence, normality of a local minimizer is a sufficient
condition in order to carry out relaxation procedure of
numerical schemes for control problems.

Theory easily adapts to allow state constraints of the
form h(t,z(t)) < 0 for every t € [0, 1].
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Research Questions

e Are the theorems true if we consider weak neigh-
borhood as

2() = 2()lly1a < &7

e Are they valid also for other N. C. involving different
adjoint equations like

p(t) € co{q: (g,p(t)) € Ngrpery @), ()}
or
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Concerning the above open questions, Ioffe claimed:

'Suppose that Z(.) is a local W11 minimizer which is
normal with respect to

p(t) € co{q: (q¢,p(t)) € Ngrp, (@ (1), z(t))}

Then Z(.) is also a Wl l-relaxed minimizer’.

(A. D. Ioffe - Euler Lagrange and Hamiltonian For-
malisms in Dynamic Optimization, 1997)’
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This claim, as stated, is incorrect. This is illustrated
by the following counter-example . . .

In fact, our work reveals, to correct Ioffe’s assertion, we
need to consider normality w.r.t. the Hamiltonian
Inclusion, and consider local optimality w.r.t. the
L°° norm.
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Counterexample

(R. Vinter), 2013

Consider the probem:

[ Minimize (321(1) — z2(1))

overabs.cont. z(.) = (z1(.),z>(.),23(.)) s.t.

()] [ o ] [ o ] | 0
(E) ! zo(t) | € | x1(t) |U| z1(¢) | U | min{x1(t),0}
I :b3(t) | I 1 . I —1 . I 0

(21(0),22(0),23(0)) € [0,00) x {0} x {0},

\ (331(1),5132(1),2133(1)) ERxRXxR
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[ul,vajcuurdmatesufpﬂnts ljvl, v ,v3}E F(x)

(0,0)

2
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It turns out that:

e Since (F) is free endpoint constraint, then the so-
lutions are normal;

e z(.) = (0,0,0) is a weak local minimizer for (FE)
with ||LIZ()||W1,1 <e < 1/2;

e The coF-trajectory Z(.), determined by Z(0) = (¢/2+/3,0,0)
and z(t) = (0,¢/2+/3,0) is feasible and yields a cost
less than O.

Then z(.) = (0,0,0) is not also a relaxed minimizer.
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To Summarize...

Normality for (P) with N inf{P} = inf{R}
Fully Convex: fied Hamiltonian N.C. i the L°° norm

Normality for (P) with & inf{P} = inf{R}
Partially Convexi fied Hamiltontan N.C. in the W1 norm

Normality for (P) with 4 inf{P} = inf{R}
Extended Euler Lagrange N.C. in the WH1 norm
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Open Research Question

Consider the problem:

y

minimize g(x(0),z(1))
over the absolutely continuos arcs x(+)
(P) | and the measurable control functions u(-) s.t.
z(t) = f(t,z(t),u(t)) a.e. te]0,1]
u(t) eU(t) a.e.te]0,1]
| ((0),z(1)) € C

Warga proved a Type B Theorem for a Nonsmooth
Maximum principle.

Is the Type A Theorem also true?
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If we assume the dynamic has the structure

f(t,z,u) ;.= A(t,z) + B(t,z)u
with
det(B(t,z)B' (t,z)) # 0,

for every x, a.e. t € [0,1], then a Type A theorem is
valid for the Nonsmooth P.M.P. with adjoint equation

—p(t) € co d:h(t,Z(¢t),u(t),p(t)) a.e.
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