Properties of Minimizers that are not also Relaxed Minimizers

M. Palladino

EEE Department, Imperial College London

Paris, 10 June 2013

SADCO Doctoral Days

Imperial College London

Original Problem

Consider the Optimal Control Problem:

$$(P) \begin{cases} \text{minimize } g(x(0), x(1)) \\ \text{over the } x \in W^{1,1}([0,1]; \mathbb{R}^n) \text{ s.t.} \\ \dot{x}(t) \in F(t, x(t)) \text{ a.e.} \\ (x(0), x(1)) \in C \end{cases}$$

- (H1): $C \subset \mathbb{R}^n \times \mathbb{R}^n$ is closed and $g : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz continuous;
- (H2): F(⋅, ⋅) takes values closed sets and F(⋅, x) is measurable for each x;

• For a nominal trajectory $\bar{x}(.)$

(H3): There exist $k(.), c(.) \in L^1$, and $\varepsilon > 0$ s.t.: I) $F(t,x) \subset F(t,x') + k(t)|x - x'|B$ II) $F(t,x) \subset c(t)B$ for all $x, x' \in \overline{x}(t) + \varepsilon B$, a.e. $t \in [0, 1]$.

Define the maximized Hamiltonian:

$$H(t, p, x) = \max_{v \in F(t, x)} (p \cdot v)$$

Local minimizers

An *F*-trajectory $\bar{x}(.)$ is a **strong** local minimizer for (*P*) if, for $\varepsilon > 0$,

$$g(\bar{x}(0), \bar{x}(1)) \leq g(x(0), x(1))$$

for every

$$||x(.)-\bar{x}(.)||_{L^{\infty}} \leq \varepsilon.$$

 $\bar{x}(.)$ is a **weak** local minimizer if

$$g(\bar{x}(0),\bar{x}(1)) \leq g(x(0),x(1))$$

for every

$$||x(.)-\bar{x}(.)||_{W^{1,1}} \leq \varepsilon.$$

Existence of a Minimizer

Theorem: Suppose hypotheses (H1), (H2) and (H3) and assume, furthermore, the following conditions:

- if we write $C = C_0 \times C_1$, then or C_0 either C_1 is bounded;
- the multifunction $x \mapsto F(t, x)$ has convex value a.e. $t \in [0, 1]$.

Then (P) has a minimizer.

Relaxed Control Problem

Let's introduce the relaxed problem:

(R)
$$\begin{cases} \text{minimize } g(x(0), x(1)) \\ \text{over the } x \in W^{1,1}([0,1]; \mathbb{R}^n) \text{ s.t.} \\ \dot{x}(t) \in \operatorname{co} F(t, x(t)) \text{ a.e.} \\ (x(0), x(1)) \in C \end{cases}$$

Relaxation Theorem: Assume the hypotheses (H1) - (H3) and take any co*F*-trajectory x and a $\delta > 0$. Then there exists an *F*-trajectory y such that satisfies y(0) = x(0) and

$$\max_{t\in[0,1]}|y(t)-x(t)|<\delta.$$

Reachable Set Interpretation

Define the original Reachable set

 $\mathcal{R} := \{ (x(0), x(1)) : \dot{x}(t) \in F(t, x(t)) \text{ a.e. } t \in [0, 1] \},\$

and the relaxed Reachable set

 $S := \{ (x(0), x(1)) : \dot{x}(t) \in coF(t, x(t)) \text{ a.e. } t \in [0, 1] \}.$

Then it turns out that

$$\bar{\mathcal{R}} = \mathcal{S}.$$

Why is Relaxation useful?

A standard relaxation procedure concerns:

- **Step 1:** Solve the relaxed problem (which always has a solution).
- Step 2: Approximate the solution to the relaxed problem as closely as required to obtain a sub-optimal solution to the original problem.

Infimum Gap

The relaxation procedure works if we assume that:

 $\inf\{P\} = \inf\{R\}.$

But, in certain pathological situations, it could happen that

$$\inf\{P\} > \inf\{R\}.$$
 (1)

These situations are problematic because we cannot obtain a suboptimal minimizers for (P). Furthermore, we encounter also a breakdown of the **Dynamic Pro**gramming method and HJB approach.

Infimum Gap: An Example

Consider the problem:

$$(E) \begin{cases} \text{Minimize} - x_1(1) \\ \text{over } x(.) = (x_1(.), x_2(.), x_3(.)) \text{ satisfying} \\ \dot{x}_1(t) = 0 \\ \dot{x}_2(t) = x_1(t)u(t) \\ \dot{x}_3(t) = |x_2(t)|^2 \\ u(t) \in U(t) \equiv \{-1\} \cup \{+1\} \\ x_2(0) = x_3(0) = x_3(1) = 0 . \end{cases}$$

It turns out that $\bar{x}(.) = (0,0,0)$ is an original strong local minimizer but is **not** also a relaxed minimizer. Indeed, every trajectory $\tilde{x}(.) = (\alpha, 0, 0)$ is a relaxed strong local minimizer for the bound

$$||x(.)||_{L^{\infty}} \leq \alpha$$

Abnormality of Multipliers

A trajectory $\bar{x}(.)$ is **abnormal** if there exists a couple $(\lambda, p(.))$ which satisfies some set of Necessary Conditions with $\lambda = 0$.

We relate the "infimum gap" (1) to abnormality of multipliers.

Assume "infimum gap" (1). Then

(Type A): Any **original** minimizers for (P) is abnormal.

(Type B): Any **relaxed** trajectory which satisfies (1) is abnormal.

Some Results

Type A Theorem (Palladino-Vinter), 2013 Let $\bar{x}(\cdot)$ be a strong local minimizing *F*-trajectory for

(*P*). Assume (*H*1), (*H*2) and (*H*3). Suppose that $\bar{x}(.)$ is **not** also a minimizer for (*R*).

Then there exists $p(\cdot) \in W^{1,1}([0,1]; \mathbb{R}^n)$ such that:

i) $((\lambda = 0), p(\cdot)) \neq (0, 0);$

 $ii) \ (-\dot{p}(t), \dot{ar{x}}(t)) \in \mathsf{CO}\partial_{x,p}H(t, ar{x}(t), p(t))$ a.e.;

iii) $(p(0), -p(1)) \in (\lambda = 0) \partial g(\bar{x}(0), \bar{x}(1)) + N_C(\bar{x}(0), \bar{x}(1)).$

Type B Theorem (Palladino-Vinter), 2013 Let $\bar{x}(\cdot)$ be a feasible co*F*-trajectory. Assume (*H*1), (*H*2) and (*H*3). Suppose also

(H4) : there exist $\varepsilon > 0$ and $\delta > 0$ such that

 $g(x(0), x(1)) > g(\bar{x}(0), \bar{x}(1)) + \delta$

for every feasible F-trajectory $x(\cdot)$ such that

$$||x(\cdot) - \bar{x}(\cdot)||_{\infty} \leq \varepsilon.$$

Then there exists $p(\cdot) \in W^{1,1}([0,1];\mathbb{R}^n)$ such that i) $((\lambda = 0), p(\cdot)) \neq (0,0);$

$$ii)~(-\dot{p}(t),\dot{ar{x}}(t))\in\mathsf{CO}\partial_{x,p}H(t,ar{x}(t),p(t))$$
 a.e.;

iii) $(p(0), -p(1)) \in (\lambda = 0) \partial g(\bar{x}(0), \bar{x}(1)) + N_C(\bar{x}(0), \bar{x}(1)).$

Type A Theorem

Type B Theorem

Sketch of the Proof for Type B Th.

- Use the Relaxation Theorem to define an original (non feasible) sequence $x_i \to \overline{x}$ in L^{∞} .
- Construct a sequence of perturbed problems (respect to x_i) and use the Stegall's Variational Principle.
- Pass to the limit in the Clarke's Hamiltonian N. C.

Type B Th. \Longrightarrow Type A Th.

Remarks

If we look at the **contrapositive** statement of the Type A Theorem, it follows that normality of the minimizer implies the equality

 $\inf\{P\} = \inf\{R\}.$

Hence, **normality** of a local minimizer is a sufficient condition in order to carry out relaxation procedure of numerical schemes for control problems.

Theory easily adapts to allow **state constraints** of the form $h(t, x(t)) \leq 0$ for every $t \in [0, 1]$.

Research Questions

 Are the theorems true if we consider weak neighborhood as

$$||x(.) - \bar{x}(.)||_{W^{1,1}} \le \varepsilon$$
?

• Are they valid also for other N. C. involving different adjoint equations like

$$\dot{p}(t) \in \operatorname{CO}\{q : (q, p(t)) \in N_{\operatorname{Gr}F(t,.)}(\bar{x}(t), \dot{\bar{x}}(t))\}$$

or

$$-\dot{p}(t) \in \operatorname{co}\{q : (q, \dot{\overline{x}}(t)) \in \partial_{x,p}H(t, \overline{x}(t), p(t))\}$$
?

Concerning the above open questions, **Ioffe** claimed:

'Suppose that $\bar{x}(.)$ is a local $W^{1,1}$ minimizer which is normal with respect to

 $\dot{p}(t) \in \operatorname{co}\{q : (q, p(t)) \in N_{\operatorname{Gr} F(t,.)}(\bar{x}(t), \dot{\bar{x}}(t))\}$

Then $\bar{x}(.)$ is also a $W^{1,1}$ -relaxed minimizer'.

(A. D. Ioffe - Euler Lagrange and Hamiltonian Formalisms in Dynamic Optimization, 1997)' This claim, as stated, is incorrect. This is illustrated by the following counter-example . . .

In fact, our work reveals, to correct Ioffe's assertion, we need to consider **normality w.r.t. the Hamiltonian inclusion**, and consider **local optimality w.r.t. the** L^{∞} **norm**.

Counterexample

(R. Vinter), 2013

Consider the probem:

$$(E) \begin{cases} \text{Minimize } \left(\frac{1}{2}x_{1}(1) - x_{2}(1)\right) \\ \text{over abs. cont. } x(.) = (x_{1}(.), x_{2}(.), x_{3}(.)) \text{ s.t.} \\ \left[\frac{\dot{x}_{1}(t)}{\dot{x}_{2}(t)}\right] \in \left[\begin{array}{c} 0 \\ x_{1}(t) \\ 1 \end{array}\right] \cup \left[\begin{array}{c} 0 \\ x_{1}(t) \\ -1 \end{array}\right] \cup \left[\begin{array}{c} 0 \\ \min\{x_{1}(t), 0\} \\ 0 \end{array}\right] \\ (x_{1}(0), x_{2}(0), x_{3}(0)) \in [0, \infty) \times \{0\} \times \{0\}, \\ (x_{1}(1), x_{2}(1), x_{3}(1)) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \end{cases}$$

It turns out that:

- Since (E) is free endpoint constraint, then the solutions are **normal**;
- $\bar{x}(.) = (0,0,0)$ is a weak local minimizer for (E) with $||x(.)||_{W^{1,1}} \le \varepsilon < 1/2$;
- The co*F*-trajectory $\tilde{x}(.)$, determined by $\tilde{x}(0) = (\varepsilon/2\sqrt{3}, 0, 0)$ and $\dot{\tilde{x}}(t) = (0, \varepsilon/2\sqrt{3}, 0)$ is feasible and yields a cost **less** than 0.

Then $\bar{x}(.) = (0, 0, 0)$ is **not** also a relaxed minimizer.

To Summarize...

Normality for (P) with Fully Convexified Hamiltonian N.C. $\Rightarrow \inf\{P\} = \inf\{R\}$ in the L^{∞} norm

Normality for (P) with Partially Convexified Hamiltonian N.C. $\Rightarrow \inf\{P\} = \inf\{R\}$ in the W^{1,1} norm

Normality for (P) with Extended Euler Lagrange N.C. $\Rightarrow \inf\{P\} = \inf\{R\}$ in the W^{1,1} norm

Open Research Question

Consider the problem:

$$(P) \begin{cases} \text{minimize } g(x(0), x(1)) \\ \text{over the absolutely continuos arcs } x(\cdot) \\ \text{and the measurable control functions } u(\cdot) \text{ s.t.} \\ \dot{x}(t) = f(t, x(t), u(t)) \quad \text{a.e. } t \in [0, 1] \\ u(t) \in U(t) \quad \text{a.e. } t \in [0, 1] \\ (x(0), x(1)) \in C \end{cases}$$

Warga proved a Type B Theorem for a Nonsmooth Maximum principle.

Is the Type A Theorem also true?

If we assume the dynamic has the structure

f(t, x, u) := A(t, x) + B(t, x)u

with

$$det(B(t,x)B^T(t,x)) \neq 0,$$

for every x, a.e. $t \in [0, 1]$, then a **Type A theorem** is valid for the Nonsmooth P.M.P. with adjoint equation

$$-\dot{p}(t)\in \mathsf{CO}\;\partial_x h(t,ar{x}(t),ar{u}(t),p(t))$$
 a.e.

References

- F. H. Clarke "Necessary Conditions in Dynamic Optimization", 2005;
- A. D. Ioffe "Euler Lagrange and Hamiltonian Formalisms in Dynamic Optimization", 1997;
- M. P. R. B. Vinter "Properties of Minimizers that are not also Relaxed Minimizers", submitted;
- R. B. Vinter "The Hamiltonian Inclusion for Non-Convex Velocity Sets", submitted;

- J. Warga "Optimal Control of Differential and Functional Equations", 1972;
- J. Warga "Controllability, Extremality and Abnormality in Nonsmooth Optimal Control", 1983.

Thank you!