
User’s guide for the ROC-HJ ∗ solver:
Finite Differences and Semi-Lagrangian methods

February 2013
Version 1.0

Current developers : O. Bokanowski, A. Desilles, H. Zidani.

1 Problem solved
This is a C++MPI/OpenMP library for solving d-dimensional Hamilton-Jacobi-Bellman

equations by finite difference methods, or semi-lagrangian methods. The equations consi-
dered are of the following type.

1.1 Evolutionary case
The problem is to find u = u(t, x) solution of

∂u
∂t +H(x,∇u) = 0, x ∈ Ω, t ∈ [0, T],

u(t, x) = ubord, x ∈ ∂Ω, t ∈ [0, T],

u(0, x) = u0(x), x ∈ Ω

(1)

where Ω is a domain of Rd of the form
∏d
i=1[ai, bi], and ubord is a constant (other boundary

conditions are possible). The function H(x, p) can be defined either directly or as follows 1

H(x,∇u) := max
a∈A

(
− f(x, a) · ∇u− `(x, a)

)
, (2)

where A is a set of controls, of the form
∏nA
i=1[αi, βi], or

2

H(x,∇u) := max
a∈A

min
b∈B

(
− f(x, a, b) · ∇u− `(x, a, b)

)
, (3)

∗Reachability, Optimal Control, and Hamilton-Jacobi
1. maxa∈A(· · ·) can be also mina∈A(· · ·)
2. maxa∈Aminb∈B(· · ·) can be also mina∈Amaxb∈B(· · ·)

1

where A and B are control sets of the form
∏nA
i=1[α

A
i , β

A
i] and

∏nB
j=1[α

B
j , β

B
j].

1.2 Stationary case
The problem is to find u = u(x) solution of

u+H(x,∇u) = 0, x ∈ Ω\C, (4)

with H given by (2), Ω a square of Rd of the form
∏d
i=1[ai, bi], and C is a given subset of

Ω. In that case, the boundary conditions are given by

u(x) = 0, x ∈ ∂C.

and
u(x) = ubord, x ∈ ∂Ω,

and the set C is also coded by the function u0, such that C := {x, u0(x) ≤ 0}.

2 Compilation and execution (under GCC and CMake)
In order to make the program works, the c++ compiler GCC and the build system CMake
are proposed to help the compilation process. The source files are typically in the directory
src/. User’s data files are typically in the directory data/.

For deeper informations, we redirect the user to the following links :
http ://gcc.gnu.org/install/
http ://www.cmake.org/cmake/resources/software.html

Building the Makefile : cmake . (do not forget the "dot")

Compilation : make (source .cpp files are generally in the directory src/)

Options : make clean (cleaning some .o files), make cleanall.

Other : "./clean" to first erase all unecessary files (can be done before the "cmake ."
command.)

Sequential code Execution (basic) :

./exe

Execution (with options)

./exe -nn NN -nc NC

Options :
• option -nn NN : number of mesh points per dimension
• option -nc NC : number of controls per command’s dimension.

2

OpenMP Some options run with OpenMP. Execution :

./exe -nt nbth

where nbth is the number of threads (typically try nbth=2 or nbth=4).

3 User’s parameters
The file data/data_simulation.h is the main user’s input file and contains the parame-
ters that define the equation to be solved. It can include an other data_xxx.h file (see
basic examples data_basicmodel.h, data_FD_2d_ex1_basic.h). It contains also parame-
ters relative to the output during the execution saving data and data post-treatment (see
paragraph "Output parameters").
• NAME : name of the problem
• DIM : dimension d of the problem

Choice of the solver
• METHOD ∈ {MDF,MSL} :

MDF : Finite Difference Method
MSL : Semi-Lagrangian Method

Stopping criteria
• T : terminal time
• MAX_ITERATION : to stop the program when this maximum number of iterations is

reached.
• EPSILON : for stopping criteria. If set to 0, do nothing. If set to some positive value
ε, then the program will stop at iteration n+ 1 as soon as

(∆x1 · · ·∆xd)
∑
i

|vn+1
i − vni | ≤ ε.

(the L1 error between two successive steps is smaller than ε).

Finite Difference Method This method is used when METHOD=MDF, and it utilizes :
• COMMANDS ∈ {0,1,2} :

This decides how we define the Hamiltonian functionH(x, p) (using the "commands"
or not).

1 : the commands are used in the definition of the numerical hamiltonian, as in (2).
The program will use a numerical hamiltonian function corresponding to a finite
difference approximation of H(x,∇u) = max

α
(−f(x, α).∇u − `(x, α)). Examples

are given in data_basicmodel.h (rotation), or data_FD_2d_ex1_basic.h (eikonal
equation).

3

2 : the commands are used in the definition of the numerical hamiltonian, as in (3).
The program will use a numerical hamiltonian function corresponding to a finite
difference approximation of (for instance) H(x,∇u) = max

α
min
β

(−f(x, α, β).∇u−

`(x, α, β)).
0 : an Hnum function must be directly defined by the user ; it has to be a numerical
hamiltonian corresponding toH(x, p). Examples are given in data_advancedmodel.h,
data_FD_2d_ex1_advanced.h.

If COMMANDS=1, we need also to define
• function dynamics : f(x, α)

• function distributed_cost : `(x, α)

• a set of commands corresponding to the discretization of a cube
∏
i=1,nc

[αi, βi], defi-
ned by cDIM (dimension nc of the set of controls), NCD[cDIM] (number of commands
per direction) UMIN[cDIM], UMAX[cDIM] (min and max values αi and βi of the com-
mands in each direction).

If COMMANDS=2, we need to define
• function dynamics2 : f(x, a, b, t)

• function distributed_cost2 : `(x, a, b, t)
• two sets of commandsA and B, corresponding to the discretization ofA ≡

∏
i=1,nA

[αAi , β
A
i]

and B ≡
∏
i=1,nB

[αBi , β
B
i]. The parameters cDIM, cDIM2 will correspond to nA and

nB, the dimension of each set of controls), NCD[cDIM] is the number of commands
per direction, and UMIN[cDIM], UMAX[cDIM] are the min and max values of αi and
βi of the commands in each direction.

If COMMANDS=0, we need to define
• function Hnum : a first order numerical Hamiltonian.
• function compute_Hconst. This function must define d constants which are bounds

for
∣∣∣∂H∂pi (x, p, t)∣∣∣ (i = 1, . . . , d), for x ∈ Ω and for possible gradient values p and time t.

This is then used to set the time step ∆t in order to satisfy a CFL condition. These
constants may also be used in the function Hnum.
(The user may also define directly the constants ci =Hconst[i] and initialize the
previous function accordingly.)

Then, in all cases, we have also to set the scheme discretisation parameters :
• TYPE_SCHEME ∈ {LF,ENO2} : type of spacial discretization

LF : Lax-Friedrich scheme (first order scheme)
ENO2 : ENO scheme of second order to approximate the derivatives ∇u

• TYPE_RK ∈ {RK1,RK2,RK3} : Time discretization by a Runge-Kutta method of order
1, 2 or 3.

RK1 : RK method of order 1

4

RK2 : RK method of order 2
RK3 : RK method of order 3

Semi-Lagrangian Method This method is used when METHOD=MSL. It assumes that :

H(x,∇u) ≡ max
α

(−f(x, α).∇u− `(x, α)).

Then it needs to define :
• function dynamics : dynamics f(x, α)

• function distributed_cost : cost function `(x, α)

• TYPE_SCHEME ∈ {STA,EVO} :
STA : stationnary case, for solving (4). In this case, the scheme is based on an
iterative procedure. 3

EVO : dynamic case, for solving (1)
ORDER : this value is set to 1 for solving first order equations of type (1) (see other
section below for second order HJB equations).

• TYPE_STA_LOOP ∈ {NORMAL, SPECIAL} : Mesh loop order during mainloop for the
stationary case.

NORMAL : normal ordering loop
SPECIAL : special ordering loop (makes 2d loops at each iteation, modifiying the
current values of the data v during each loop)

• TYPE_RK ∈ {RK1_EULER,RK2_HEUN,RK2_PM} :
RK1_EULER : RK1 Euler scheme
RK2_HEUN : RK2 Heun scheme
RK2_PM : RK2 Mid-point scheme

• INTERPOLATION ∈ {BILINEAR,PRECOMPBL,DIRPERDIR} :
BILINEAR : (default value) bilinear interpolation (Q1 interpolation)
PRECOMPBL : precompute the interpolation coefficients (to use with tiny mesh sizes)
DIRPERDIR : another interpolation method

• COMPLEMENTS :

3. The scheme is based on the following iteration on n ≥ 0, for a fixed h > 0 :

un+1(x) + max
a

(
un+1(x)− un(x+ hf(x, a))

h
− `(x, a)

)
= 0,

untill ‖un+1 − un‖ reaches a given threshold. Therefore we obtain the following recursion

un+1(x) = min
a

(
1

1 + h
[un](x+ hf(x, a)) +

h

1 + h
`(x, a)

)

5

P_INTERMEDIATE : number of intermediate timesteps to go from tn to tn + ∆t for
computing a caracteristic for a given RK method.
ORDER ∈ {1,2} : decide treatement for first order HJ equation or for second order
HJ equation.

Discretization parameters
• ND[DIM] : tab containing the size mesh in each direction (cartesian mesh)
• MESH ∈ {0,1} : default is 1. It utilizes ND[i]+1 points in direction i. (If MESH=0

the mesh points are at the center of the mesh cells, and there are ND[i] points in
direction i)

• DT : the time step used for the solver, for the evolutive equation.
- For the finite difference approach, if DT=0, then time step DT is computed so that
the CFL condition be satisfied, that is, such that
DT * (Hconst[0]/dx[0] + Hconst[1]/dx[1] + ...) <= CFL

where the CFL number belongs to [0, 1]. Otherwise, if DT>0, then the value DT is
used for the time step.
- For the semi-lagrangian approach and for the stationnary equation, the parameter
h in the iterative procedure is also set to DT

Other parameters for the definition of the problem The parameters are :
• XMIN[DIM], XMAX[DIM] : the boundary (ai, bi) of the domain in each direction
• PERIODIC[DIM] : each componant set the periodicity for each direction

1 : direction is periodic
0 : direction is not periodic

• VBORD : constant eventually used in the case of Dirichlet boundary condition.
• function v0 : the initial data
• function Vex : if known, the user can put the exact solution of the problem here.
• integer EXTERNAL_v0 ∈ {0,1} : if 0 initialize with function v0, otherwise initialize

with last VF.dat values.

Obstacle terms Instead of solving ut +H(t, x,∇u) = 0, the solvers can also treat HJ
obstacle equations such as

min

(
∂u

∂t
+H(x,∇u), u− g(t, x)

)
= 0. (5)

In particular it forces to have u(t, x) ≥ g(t, x) in the case of (5). For this, the following
parameters are used :
• OBSTACLE ∈ {0,1}

0 : no obstacle taken into account.
1 : Equation (5) is treated, with the obstacle g .

6

• function g_obstacle

Output parameters
• COMPUTE_MAIN_LOOP :

1 : the main computational loop (iterative scheme) is called
0 : the main loop is not called, only data initializations and savings are performed.

• COMPUTE_VEX∈{0,1} : will save a VEX.dat file.
1 : if the exact solution is given by the user (using function Vex)
0 : no saving.

In particular it will compute errors (see below) relatively to this value.
• COMPUTE_TMIN∈{0,1} : will compute file tmin.dat which contains the first time
tn ∈ [0, T] (or some P1 interpolant) such that v(tn, x) ≤ 0 (Set the value to INF=1.e5
otherwise.)

• PRECOMPUTE_COORD :
1 : precomputes the coordinates : faster computations but more memory deman-
ding.
0 : no precomputations.

• SAVE_VFALL ∈ {0,1} : to save the value of v each SAVE_VFALL_STEP iterations (into
file VFALL.dat).

• CHECK_ERROR ∈ {0,1} : to compute error every CHECK_ERROR_STEP steps (L∞ and
L1 error computations) Errors are relative to the Vex function. Error are computed
only in the region of points x such that |Vex(t,x)|<C_THRESHOLD 4

• COUPE_DIMS[DIM], COUPE_VALS[DIM] :
- list of integers ni (0 or 1) to define the two variables used for the cut.
- list of values (ci or 0.) to define the position of the cut. The values ci are used only
when ni = 0.
- The output is in the file output.dat
- Example : COUPE_DIMS[DIM]={1,0,1} and COUPE_VALS[DIM]={0.,0.5,0.} define
a cut in the plane x2 = 0.5.

4 Output files
• VF.dat contains the final u at the end of the computation. The file is structured as
follows, on each line :

i1 i2 id val

where val corresponds to the value u(T, x) at mesh point x = (xi1 , . . . , xid).
• VEX.dat contains the final value as programmed in Vex (if COMPUTE_VEX=1).

4. For the moment, C_THRESHOLD is defined in src/main.cpp.

7

• coupe.dat (and coupeex.dat) can be obtained in the same way, for a problem in di-
mension d ≥ 3 and when we make a "cut" in some particular subspace with some given
coordinates, and that we want to visualize the results. See paragraph "Output parame-
ters" for using COUPE_DIMS and COUPE_VAL. This is typically used to make a 2d cut (see
for instance example data/data_FD_3d.h).

5 Graphic outputs
Matlab : the file read.m can be executed by typing ’read’ in the Matlab’s user interface
Some parameters are given below :

For the first figure :
• level_set : a level set value.
• PLOT_CONTOUR∈{0,1} : if set to 1, will plot contours of the output with level_set

value.
• PLOT_REACHABLE∈{0,1} : if set to 1, will plot the 2d set of points where output value

is ≤ level_set).
This plot is based on the output value which is in the file VF.dat for DIM=2, and a priori
in the file coupe.dat for DIM>2.

For the second figure :
• PLOT_3d∈{0,1} : set this parameter to 1 in order to obtain a 3d graph of the result.
• PLOT_TMIN∈{0,1} : (default is 0). Set this parameter to 1 in order to obtain a 3d

graph of the minimal time (to reach a target). Will then use output tmin.dat, and
will draw several contour plots ranging from 0 to T (plotting tmin.dat is only ok
for DIM=2).

Also for both figures,
• AXIS_EQUAL∈{0,1}, if set to 1, will make "axis equal",
• TRAJECTORY∈{0,1}, if set to 1, will line-plot the list of first two components (x1, x2)

of file "trajectory.dat".

Paraview : For the moment this option is only working for some 2d/3d cases.
Launch "paraview", then load the files in VTK/* (load tab* and so on).

6 Examples
Rotation example : We give two ways to program an advection-like example, in files
data_basicmodel.h and data_advancedmodel.h. We consider the equation

∂tu+ max(0,−f(x) · ∇u) = 0.

8

with the parameters Ω = [−2, 2]2, T = 0.5, f(x1, x2) = 2π(−x2, x1). (Hence the Hamilto-
nian H(x, p, t) = max(0,−f(x) · p).)

In the first way (data_basicmodel.h), we define dynamics

f(x, a) = af(x)

with two control values a ∈ {0, 1}.
In the second way (data_advancedmodel.h), we define the Lax-Friedrich numerical

hamiltonian Hnum associated to H (see (8)).

Eikonal equation : see the files data_FD_2d_ex1_basic.h and data_FD_2d_ex1_advanced.h
The problem solved is

∂tu+ c(x, t)‖∇u‖ = 0, x ∈ [−2, 2]d, t ∈ [0, T]. (6)

u(0, x) = u0(x), x ∈ [−2, 2]d, (7)

with d = 2, T = 1, here c(x, t) ≡ 1, and with some (radially symetric) initial data u0(x).
In the file data_FD_2d_ex1_basic.h, a scheme is programmed using a control-discretisation

of ‖∇u‖ :
‖∇u‖ ∼ max

k=0,...,NCD−1
〈(cos(θk), sin(θk),∇u〉.

In the file data_FD_2d_ex1_advanced.h, a scheme is programmed using a Lax-Friedriech
numerical approximation Hnum associated to H :

Hnum(x, (p−1 , p
+
1), . . . , (p−d , p

+
d), t) := H(x,

p− + p+

2
, t)−

d∑
i=1

ci

(
p+i − p

−
i

2

)
(8)

The exact solution is given for comparison.

7 Source architecture
In this section, we present the architecture used in the implementation of the pro-

ject. The HJB class represents the main class and the DF and SL classes are sub-classes
of HJB. Commands and Mesh are seperated classes. We remind that the user needs to
code the problem parameters into a C++ header file and to include its name in the file
data/data_simulation.h. For example, if the user data file is called data_myexample.h,
then the line #include "data_myexample.h" (and only this one) must be included in the
file data/data_simulation.h.

9

10

