
HAMILTON-JACOBI EQUATIONS : APPROXIMATIONS,
NUMERICAL ANALYSIS AND APPLICATIONS

CIME Courses-Cetraro
August 29-September 3 2011

COURSES

(1) Models of mean field, Hamilton-Jacobi-Bellman Equations and numerical
methods. Yves Achdou.

(2) First-order Hamilton-Jacobi Equations and Applications. Guy Barles.
(3) Basic properties of viscosity solutionsand some aspects of weak KAM the-

ory. Hitoshi Ishii.
(4) Idempotent/Tropical Analysis and the Hamilton-Jacobi-Bellman Equations.

Grigory L. Litvinov.
(5) Homogenization and Approximation for Hamilton-Jacobi equations. Pana-

giotis E. Souganidis.

The courses [2] and [3] will be mainly devoted to an introduction to the theory.
The course [4] will introduce idempotent mathematics to evidence analogs between
max (or min) non linearity in partial differential equations. The courses [1] and
[5] will be more advanced (so they will follow in the time schedule [2] and [3]) and
they will be devoted to applications and numerical results.
The final version of the texts of the lectures will be published in the Springer
Lecture Notes in Mathematics, CIME Subseries. A preliminar version (slides on
line) during the course will be helpful to the understanding.

August 29 August 30 September 1st September 2 September 3
9.00 10.00 Barles 1 Ishii 3 Litvinov 4 Achdou 2 Souganidis 4
10.15 11.15 Barles 2 Ishii 4 Litvinov 5 Achdou 3 Souganidis 5
11.15 Coffe Break
11.45 12.45 Litvinov 1 Achdou 1 Souganidis 1 Barles 5 Ishii 5
13.00 Lunch
16.45-17.45 Ishii 1 Litvinov 2 Barles 3 Souganidis 2 Achdou 4
18.00-19.00 Ishii 2 Litvinov 3 Barles 4 Souganidis 3 Achdou 5
20.00 Dinner
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[1] Models of mean field, Hamilton-Jacobi-Bellman Equations,
and numerical methods. Yves Achdou.

Yves Achdou, UFR Mathématiques, Université Paris 7, Case 7012, 175 rue du
Chevaleret, 75013 Paris, France and UMR 7598, Laboratoire Jacques-Louis Lions,
F-75005, Paris, France. achdou@math.jussieu.fr

1.1. CIME course program. Models of mean field type for the limit of Nash
equilibria for stochastic game problems see [3] when the number of players tends
to +∞ have recently been studied by J-M. Lasry and P-L. Lions, see [5, 7, 8]. The
main assumptions are that all the N players are identical and that each player
chooses his optimal strategy in view of a global (partial) information on the game.
At the limit a system of two coupled equations is obtained: a forward in time
Hamilton-Jacobi-Bellman for a value function and a backward in time Kolmogorov
equation for a probability measure. Uniqueness is obtained under some reasonable
assumptions. Infinite horizon games will also be considered.
The following points will be discussed:

• some notions on the asymptotic behavior of the Nash equilibria when N →
∞, (a brief and incomplete review of the theory of Lasry and Lions)

• existence for the previously mentioned system of PDEs in the finite horizon
case

• uniqueness
• numerical methods for approximating the above mentioned system and nu-

merical analysis, see [1, 2, 4, 5].
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[2] First-order Hamilton-Jacobi Equations and Applications. Guy Barles.

Guy Barles, Laboratoire de Mathématiques et Physique Théorique CNRS UMR
6083 (Tours), Fédération Denis Poisson, Université François Rabelais Tours, Parc
de Grandmont 37200 TOURS, France.

2.1. CIME course program. The topic will be mainly devoted to first order
Hamilton-Jacobi Equation : notion of viscosity solutions, main properties, com-
parison theorems, stability, Lipschitz regularity of solutions and further regularity,
lower bounds on the gradient, applications to dislocation equations.
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[3] Basic properties of viscosity solutions and some aspects of weak
KAM theory. Hitoshi Ishii.

Hitoshi Ishii, Department of Mathematics, Waseda University, Nishi-Waseda,
Shinjuku, Tokyo, 169- 8050 Japan, hitoshi.ishii@waseda.jp

3.1. CIME course program. Basic properties of viscosity solutions, some as-
pects of weak KAM theory, as well as comparison theorems, regularity results and
asymptotic analysis for first-order and second-order nonlinear partial differential
equations.

A reference to this course could be

References

[1] M. G. Crandall, H.Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial
differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67.

[2] Y. Fujita, H. Ishii, P. Loreti, Asymptotic solutions of viscous Hamilton-Jacobi equations

with Ornstein-Uhlenbeck operator. Comm. Partial Differential Equations 31 (2006), no. 4-6,
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[4] Idempotent/Tropical Analysis and the Hamilton-Jacobi-Bellman Equa-
tion. Grigory L. Litvinov.

Grigory L. Litvinov, Independent University of Moscow and the Russian-French
Laboratory “J.-V. Poncelet” Bol’shoi Vlasievskii per., 11 Moscow 119002, Russia.
islc@dol.ru.

4.1. CIME course program. The Maslov dequantization and tropical mathe-
matics. Idempotent mathematics and the idempotent correspondence principle.

The Hamilton-Jacobi equation as a result of the Maslov dequantization for the
Schroedinger equation. Linearity of the Hamilton-Jacobi-Bellman equation over
tropical algebras. The Maslov superposition principle. Idempotent analysis and
viscosity solutions. Bellman equations and optimization. Matrix Bellman equa-
tions. Numerical solutions and universal algorithms. Idempotent interval analysis.
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[5] Homogenization and Approximation for Hamilton-Jacobi equations..
Panagiotis E. Souganidis.

Panagiotis E. Souganidis, Department of Mathematics, The University of Chicago,
5734 S. University Avenue, Chicago, IL 60637

5.1. CIME course program. First- and second-order Hamilton-Jacobi equations,
Homogenization of fully nonlinear equations in random media, Approximations of
viscosity solutions and rates of convergence.
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