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The problem with free terminal point

Let [0,T ] ⇢ R.

Consider the optimal control problem (P) in the Mayer form

max
u2U

 (x(T )),

ẋ(t) = f (t, x(t), u(t)),

x(0) = x

0

,

where
U := {u : [0,T ] ! U measurable},

with U ✓ Rm compact set given,

x : [0,T ] ! Rn,  : Rn ! R, f : R⇥ Rn ⇥ U ! Rn.



u

⇤(·) 2 U is an optimal control of (P) if

 (x⇤(T )) �  (x(T )).

What is the Pontryagin Maximum Principle?

Necessary condition for optimality: it gives conditions that have to be
satisfied by (x⇤(·), u⇤(·)).

Existence of a multiplier: an absolutely continuous function

p : [0,T ] ! Rn,⇤,

that
1. is solution of the adjoint equation,
2. verifies a maximum condition.
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Statement of the PMP

(H1) f : R⇥ Rn ⇥ U ! Rn is continuous in (t, x , u), continuously
differentiable with respect to x and

|f (t, x , u)|  C , kD
x

f (t, x , u)k  L, for all (t, x , u) 2 R⇥Rn⇥U.
(1)

 : Rn ! R is differentiable.

Theorem (Pontryagin Maximum Principle)

Assume (H1). Let u⇤(·) be an optimal control for (P), and x

⇤(·) be its
associated trajectory. Denote p : [0,T ] ! Rn,⇤ the solution of the
adjoint equation

ṗ(t) = �p(t)D
x

f (t, x⇤(t), u⇤(t)), p(T ) = r (x⇤(T )).

Then the maximum condition

p(t)f (t, x⇤(t), u⇤(t)) = max
w2U

p(t)f (t, x⇤(t),w),

holds for almost every t 2 [0,T ].



Sketch of the proof

Hypothesis: Optimality of u⇤(·).

Thesis: The solution p(·) of the adjoint equation satisfies the maximum
condition.

Elements of the proof:
1. Variations of the control (‘needle’ or Weierstrass variations) and

Lebesgue Differentiation Theorem.
2. The variational equation.
3. The adjoint equation.
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Lebesgue Differentiation Theorem

Theorem

Let h : [a, b] ! RN be integrable. Then, almost every ⌧ 2 [a, b] is a
Lebesgue point, i.e.

lim
"!0

+

1
2"

Z ⌧+"

⌧�"
|h(⌧)� h(s)|ds = 0.



The dynamics

Consider the ordinary differential equation

ẋ(t) = g(t, x(t)), x(t
0

) = x

0

. (ODE)

(H2) g : R⇥ Rn ! Rn measurable in t, continuous in x and such that
there 9 C , L satisfying

|g(t, x)|  C , |g(t, x)� g(t, y)|  L|x � y | for all (t, x , y).

Theorem (Existence and uniqueness)

Assume (H2). Then, for all T > t

0

, the equation (ODE) has a global
unique solution x(·) defined on [t

0

,T ].



The variational equation

Theorem (Differentiability respect to initial conditions)

Assume (H2) + ‘g continuously differentiable w.r.t. x .’
Let x̂(t) := x(t; t

0

, x
0

) be the solution of (ODE). For a vector v
0

2 Rn,
call v(·) the solution of the linear Cauchy problem

v̇(t) = D

x

g(t, x̂(t))v(t), v(t
0

) = v

0

. (VE)

Then,

v(t) =
@

@"

�

�

�

"=0

x(t; t
0

, x
0

+ "v
0

)
⇣

= lim
"!0

+

x(t; t
0

, x
0

+ "v
0

)� x̂(t)

"

⌘

.

(VE) is usually called the variational equation associated to (ODE)



Linear adjoint equations

Theorem

v(·) and p(·) solutions of

v̇(t) = A(t)v(t),

ṗ(t) = �p(t)A(t),

Then p(t)· v(t) is constant in time.



The proof - Part I: needle variations

For ⌧ 2 (0,T ], 0 < " < ⌧, and w 2 U, define the needle variations

u"(t) :=

⇢

w if t 2 [⌧ � ", ⌧ ],
u

⇤(t) otherwise.

x"(·) associated with u"(·).

We want to prove the maximum condition at t = ⌧ (for a.a. ⌧) and for
this arbitrary w 2 U.

We aim to calculate @
@"

�

�

�

"=0

+
 (x"(T )), which we know is nonpositive.



x"(⌧)� x

⇤(⌧)

"
=

1
"

n

Z ⌧

⌧�"
f (t, x"(t),w)dt �

Z ⌧

⌧�"
f (t, x⇤(t), u⇤(t))dt

o

.

For the first integral:

1
"

Z ⌧

⌧�"

�

f (t, x"(t),w)� f (⌧, x"(⌧),w)
�

dt

 1
"

Z ⌧

⌧�"

�

L|x"(t)� x"(⌧)|+ f (t, x"(⌧),w)� f (⌧, x"(⌧),w)
�

dt �!
"!0

+
0.

For the second integral: if ⌧ is a Lebesgue point for u⇤(·) then

lim
"!0

+

1
"

Z ⌧

⌧�"
f (t, x⇤(t), u⇤(t))dt = f (⌧, x+(⌧), u⇤(⌧)).

Hence, Lebesgue Differentiation Theorem implies

lim
"!0

x"(⌧)� x

⇤(⌧)

"
= f (⌧, x⇤(⌧),w)�f (⌧, x⇤(⌧), u⇤(⌧)), for a.a. ⌧ 2 [0,T ].



Part II: the variational equation

Let v : [⌧,T ] ! Rm the solution of

v̇(t) = D

x

f (t, x⇤(t), u⇤(t))v(t),

with initial condition

v(⌧) = lim
"!0

+

x"(⌧)� x

⇤(⌧)

"
= f (⌧, x⇤(⌧),w)� f (⌧, x⇤(⌧), u⇤(⌧)).

We know that

0 � lim
"!0

+

 (x"(T ))�  (x⇤(T ))

"
=

d
d"

�

�

�

"=0

+
 (x"(T )) = D (x⇤(T ))v(T ).



Part III: the adjoint equation

From the last equation we have,

p(T )v(T )  0.

Hence,
p(⌧)v(⌧)  0,

which yields

p(⌧)[f (⌧, x⇤(⌧),w)� f (⌧, x⇤(⌧), u⇤(⌧))]  0,

and thus the maximum condition follows for a.a. ⌧ 2 (0,T ] and for all
winU.

⇤



The problem with terminal constraints

Consider now the problem (CP),

max
u2U

 (x(T )),

ẋ(t) = f (t, x(t), u(t)),

x(0) = x

0

,

x(T ) 2 S,

with S ⇢ Rn.



Approximating cones

Definition

Let S ⇢ Rn, s 2 S and K a convex cone in Rn. We say that K is an
approximating cone to S at s if there exists a neighbourhood W ⇢ Rn of
0, and a continuous map G : W \ K ! S, s.t.

G (v) = s + v + o(|v |)

as K 3 v ! 0.

Remark (Tangent cones of nonsmooth analysis)

Any convex cone of a Bouligand tangent cone, or of a Clarke tangent
cone, or of a tangent cone of Convex Analysis, is an approximating cone.

Definition

Polar cone If K ✓ X , with X a real vector space, then the polar cone is

K

? := {p 2 X

⇤ :
D

p,w
E

� 0, for all w 2 K}.



The PMP with endpoint constraints

Theorem

Assume the hypotheses (H1). Let u⇤(·) be an optimal control for
problem (CP), and x

⇤(·) be its associated trajectory. Let C be an
approximating cone to S at point x⇤(T ). Then, there exists an absolutely
continuous function p : [0,T ] ! Rn,⇤ and ↵ � 0 s.t.

ṗ(t) = �p(t)D
x

f (t, x⇤(t), u⇤(t)),

with terminal transversality condition

p(T )� ↵r (x⇤(T )) 2 C

?,

the maximum condition holds

p(t)f (t, x⇤(t), u⇤(t)) = max
w2U

p(t)f (t, x⇤(t),w),

holds for almost all t 2 [0,T ].



Sketch of the proof

1. Prove the maximum condition for a finite number of times and
values in U :
1.a Composition of finitely many needle variations.

1.b Defining an approximating cone of the reachable set.

1.c Using a set separation result that gives the transversality condition.

1.d Transporting the maximum condition back in time.

2. By some topological arguments, extend the maximum condition to
all U and a.a. t 2 [0,T ].
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