Lecture on the Pontryagin Maximum Principle

Soledad Aronna

Università degli Studi di Padova

Young Researchers Workshop on System Dynamics and Optimal Control

Madeira, Portugal. January 2013

Università DEGLI STUDI di Padova

The problem with free terminal point

Let $[0, T] \subset \mathbb{R}$.
Consider the optimal control problem (P) in the Mayer form

$$
\begin{aligned}
\max _{u \in \mathcal{U}} & \psi(x(T)) \\
\dot{x}(t) & =f(t, x(t), u(t)) \\
x(0) & =x_{0}
\end{aligned}
$$

where

$$
\mathcal{U}:=\{u:[0, T] \rightarrow \mathcal{U} \text { measurable }\}
$$

with $U \subseteq \mathbb{R}^{m}$ compact set given,

$$
x:[0, T] \rightarrow \mathbb{R}^{n}, \quad \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad f: \mathbb{R} \times \mathbb{R}^{n} \times U \rightarrow \mathbb{R}^{n}
$$

$u^{*}(\cdot) \in \mathcal{U}$ is an optimal control of (P) if

$$
\psi\left(x^{*}(T)\right) \geq \psi(x(T))
$$

What is the Pontryagin Maximum Principle?
Necessary condition for optimality: it gives conditions that have to be satisfied by $\left(x^{*}(\cdot), u^{*}(\cdot)\right)$.

Existence of a multiplier: an absolutely continuous function

$$
p:[0, T] \rightarrow \mathbb{R}^{n *},
$$

that

1. is solution of the adjoint equation,
2. verifies a maximum condition.
$u^{*}(\cdot) \in \mathcal{U}$ is an optimal control of (P) if

$$
\psi\left(x^{*}(T)\right) \geq \psi(x(T))
$$

What is the Pontryagin Maximum Principle?
Necessary condition for optimality: it gives conditions that have to be satisfied by $\left(x^{*}(\cdot), u^{*}(\cdot)\right)$.

Existence of a multiplier: an absolutely continuous function

$$
p:[0, T] \rightarrow \mathbb{R}^{n, *},
$$

that

1. is solution of the adjoint equation,
2. verifies a maximum condition.
$u^{*}(\cdot) \in \mathcal{U}$ is an optimal control of (P) if

$$
\psi\left(x^{*}(T)\right) \geq \psi(x(T))
$$

What is the Pontryagin Maximum Principle?
Necessary condition for optimality: it gives conditions that have to be satisfied by $\left(x^{*}(\cdot), u^{*}(\cdot)\right)$.

Existence of a multiplier: an absolutely continuous function

 $p:[0, T] \rightarrow \mathbb{R}^{n, *}$,1. is solution of the adjoint equation,
2. verifies a maximum condition.
$u^{*}(\cdot) \in \mathcal{U}$ is an optimal control of (P) if

$$
\psi\left(x^{*}(T)\right) \geq \psi(x(T))
$$

What is the Pontryagin Maximum Principle?
Necessary condition for optimality: it gives conditions that have to be satisfied by $\left(x^{*}(\cdot), u^{*}(\cdot)\right)$.

Existence of a multiplier: an absolutely continuous function

$$
p:[0, T] \rightarrow \mathbb{R}^{n, *}
$$

that

1. is solution of the adjoint equation,
2. verifies a maximum condition.

Statement of the PMP

(H1) $f: \mathbb{R} \times \mathbb{R}^{n} \times U \rightarrow \mathbb{R}^{n}$ is continuous in (t, x, u), continuously differentiable with respect to x and

$$
\begin{equation*}
|f(t, x, u)| \leq C, \quad\left\|D_{x} f(t, x, u)\right\| \leq L, \quad \text { for all }(t, x, u) \in \mathbb{R} \times \mathbb{R}^{n} \times U . \tag{1}
\end{equation*}
$$

$\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable.
Theorem (Pontryagin Maximum Principle)
Assume (H1). Let $u^{*}(\cdot)$ be an optimal control for (P), and $x^{*}(\cdot)$ be its associated trajectory. Denote $p:[0, T] \rightarrow \mathbb{R}^{n, *}$ the solution of the adjoint equation

$$
\dot{p}(t)=-p(t) D_{x} f\left(t, x^{*}(t), u^{*}(t)\right), \quad p(T)=\nabla \psi\left(x^{*}(T)\right)
$$

Then the maximum condition

$$
p(t) f\left(t, x^{*}(t), u^{*}(t)\right)=\max _{w \in U} p(t) f\left(t, x^{*}(t), w\right)
$$

holds for almost every $t \in[0, T]$.

Sketch of the proof

Hypothesis: Optimality of $u^{*}(\cdot)$.
Thesis: The solution $p(\cdot)$ of the adjoint equation satisfies the maximum condition.

Elements of the proof:

1. Variations of the control ('needle' or Weierstrass variations) and Lebesgue Differentiation Theorem.
2. The variational equation.
3. The adjoint equation.

Sketch of the proof

Hypothesis: Optimality of $u^{*}(\cdot)$.
Thesis: The solution $p(\cdot)$ of the adjoint equation satisfies the maximum condition.

Elements of the proof:

1. Variations of the control ('needle' or Weierstrass variations) and Lebesgue Differentiation Theorem.
2. The variational equation.
3. The adjoint equation.

Lebesgue Differentiation Theorem

Theorem
Let $h:[a, b] \rightarrow \mathbb{R}^{N}$ be integrable. Then, almost every $\tau \in[a, b]$ is a Lebesgue point, i.e.

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{2 \varepsilon} \int_{\tau-\varepsilon}^{\tau+\varepsilon}|h(\tau)-h(s)| \mathrm{d} s=0
$$

The dynamics

Consider the ordinary differential equation

$$
\begin{equation*}
\dot{x}(t)=g(t, x(t)), \quad x\left(t_{0}\right)=x_{0} . \tag{ODE}
\end{equation*}
$$

(H2) $g: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ measurable in t, continuous in x and such that there $\exists C, L$ satisfying

$$
|g(t, x)| \leq C, \quad|g(t, x)-g(t, y)| \leq L|x-y| \quad \text { for all }(t, x, y)
$$

Theorem (Existence and uniqueness)
Assume (H2). Then, for all $T>t_{0}$, the equation (ODE) has a global unique solution $x(\cdot)$ defined on $\left[t_{0}, T\right]$.

The variational equation

Theorem (Differentiability respect to initial conditions)
Assume (H2) + 'g continuously differentiable w.r.t. x.'
Let $\hat{x}(t):=x\left(t ; t_{0}, x_{0}\right)$ be the solution of (ODE). For a vector $v_{0} \in \mathbb{R}^{n}$,
call $v(\cdot)$ the solution of the linear Cauchy problem

$$
\begin{equation*}
\dot{v}(t)=D_{\times} g(t, \hat{x}(t)) v(t), \quad v\left(t_{0}\right)=v_{0} . \tag{VE}
\end{equation*}
$$

Then,

$$
v(t)=\left.\frac{\partial}{\partial \varepsilon}\right|_{\varepsilon=0} x\left(t ; t_{0}, x_{0}+\varepsilon v_{0}\right) \quad\left(=\lim _{\varepsilon \rightarrow 0^{+}} \frac{x\left(t ; t_{0}, x_{0}+\varepsilon v_{0}\right)-\hat{x}(t)}{\varepsilon}\right) .
$$

(VE) is usually called the variational equation associated to (ODE)

Linear adjoint equations

Theorem
$v(\cdot)$ and $p(\cdot)$ solutions of

$$
\begin{aligned}
\dot{v}(t) & =A(t) v(t), \\
\dot{p}(t) & =-p(t) A(t),
\end{aligned}
$$

Then $p(t) \cdot v(t)$ is constant in time.

The proof - Part I: needle variations

For $\tau \in(0, T], 0<\varepsilon<\tau$, and $w \in U$, define the needle variations

$$
u_{\varepsilon}(t):=\left\{\begin{array}{cl}
w & \text { if } t \in[\tau-\varepsilon, \tau] \\
u^{*}(t) & \text { otherwise. }
\end{array}\right.
$$

$x_{\varepsilon}(\cdot)$ associated with $u_{\varepsilon}(\cdot)$.
We want to prove the maximum condition at $t=\tau$ (for a.a. τ) and for this arbitrary $w \in U$.

We aim to calculate $\left.\frac{\partial}{\partial \varepsilon}\right|_{\varepsilon=0^{+}} \psi\left(x_{\varepsilon}(T)\right)$, which we know is nonpositive.

$$
\frac{x_{\varepsilon}(\tau)-x^{*}(\tau)}{\varepsilon}=\frac{1}{\varepsilon}\left\{\int_{\tau-\varepsilon}^{\tau} f\left(t, x_{\varepsilon}(t), w\right) \mathrm{d} t-\int_{\tau-\varepsilon}^{\tau} f\left(t, x^{*}(t), u^{*}(t)\right) \mathrm{d} t\right\} .
$$

For the first integral:

$$
\begin{aligned}
& \frac{1}{\varepsilon} \int_{\tau-\varepsilon}^{\tau}\left(f\left(t, x_{\varepsilon}(t), w\right)-f\left(\tau, x_{\varepsilon}(\tau), w\right)\right) \mathrm{d} t \\
& \quad \leq \frac{1}{\varepsilon} \int_{\tau-\varepsilon}^{\tau}\left(L\left|x_{\varepsilon}(t)-x_{\varepsilon}(\tau)\right|+f\left(t, x_{\varepsilon}(\tau), w\right)-f\left(\tau, x_{\varepsilon}(\tau), w\right)\right) \mathrm{d} t \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} 0 .
\end{aligned}
$$

For the second integral: if τ is a Lebesgue point for $u^{*}(\cdot)$ then

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\varepsilon} \int_{\tau-\varepsilon}^{\tau} f\left(t, x^{*}(t), u^{*}(t)\right) \mathrm{d} t=f\left(\tau, x^{+}(\tau), u^{*}(\tau)\right)
$$

Hence, Lebesgue Differentiation Theorem implies

$$
\lim _{\varepsilon \rightarrow 0} \frac{x_{\varepsilon}(\tau)-x^{*}(\tau)}{\varepsilon}=f\left(\tau, x^{*}(\tau), w\right)-f\left(\tau, x^{*}(\tau), u^{*}(\tau)\right), \quad \text { for a.a. } \tau \in[0, T] .
$$

Part II: the variational equation

Let $v:[\tau, T] \rightarrow \mathbb{R}^{m}$ the solution of

$$
\dot{v}(t)=D_{x} f\left(t, x^{*}(t), u^{*}(t)\right) v(t)
$$

with initial condition

$$
v(\tau)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{x_{\varepsilon}(\tau)-x^{*}(\tau)}{\varepsilon}=f\left(\tau, x^{*}(\tau), w\right)-f\left(\tau, x^{*}(\tau), u^{*}(\tau)\right)
$$

We know that

$$
0 \geq \lim _{\varepsilon \rightarrow 0^{+}} \frac{\psi\left(x_{\varepsilon}(T)\right)-\psi\left(x^{*}(T)\right)}{\varepsilon}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0^{+}} \psi\left(x_{\varepsilon}(T)\right)=D \psi\left(x^{*}(T)\right) v(T) .
$$

Part III: the adjoint equation

From the last equation we have,

$$
p(T) v(T) \leq 0
$$

Hence,

$$
p(\tau) v(\tau) \leq 0,
$$

which yields

$$
p(\tau)\left[f\left(\tau, x^{*}(\tau), w\right)-f\left(\tau, x^{*}(\tau), u^{*}(\tau)\right)\right] \leq 0
$$

and thus the maximum condition follows for a.a. $\tau \in(0, T]$ and for all winU.

The problem with terminal constraints

Consider now the problem (CP),

$$
\begin{aligned}
& \max _{u \in \mathcal{U}} \psi(x(T)), \\
& \dot{x}(t)=f(t, x(t), u(t)), \\
& x(0)=x_{0}, \\
& x(T) \in \mathcal{S},
\end{aligned}
$$

with $\mathcal{S} \subset \mathbb{R}^{n}$.

Approximating cones

Definition

Let $\mathcal{S} \subset \mathbb{R}^{n}, s \in \mathcal{S}$ and K a convex cone in \mathbb{R}^{n}. We say that K is an approximating cone to \mathcal{S} at s if there exists a neighbourhood $W \subset \mathbb{R}^{n}$ of 0 , and a continuous map $G: W \cap K \rightarrow \mathcal{S}$, s.t.

$$
G(v)=s+v+o(|v|)
$$

as $K \ni v \rightarrow 0$.

Remark (Tangent cones of nonsmooth analysis)
Any convex cone of a Bouligand tangent cone, or of a Clarke tangent cone, or of a tangent cone of Convex Analysis, is an approximating cone.

Definition
Polar cone If $K \subseteq X$, with X a real vector space, then the polar cone is

$$
K^{\perp}:=\left\{p \in X^{*}:\langle p, w\rangle \geq 0, \quad \text { for all } w \in K\right\}
$$

The PMP with endpoint constraints

Theorem

Assume the hypotheses (H1). Let $u^{*}(\cdot)$ be an optimal control for problem (CP), and $x^{*}(\cdot)$ be its associated trajectory. Let C be an approximating cone to \mathcal{S} at point $x^{*}(T)$. Then, there exists an absolutely continuous function $p:[0, T] \rightarrow \mathbb{R}^{n, *}$ and $\alpha \geq 0$ s.t.

$$
\dot{p}(t)=-p(t) D_{x} f\left(t, x^{*}(t), u^{*}(t)\right),
$$

with terminal transversality condition

$$
p(T)-\alpha \nabla \psi\left(x^{*}(T)\right) \in C^{\perp},
$$

the maximum condition holds

$$
p(t) f\left(t, x^{*}(t), u^{*}(t)\right)=\max _{w \in U} p(t) f\left(t, x^{*}(t), w\right),
$$

holds for almost all $t \in[0, T]$.

Sketch of the proof

1. Prove the maximum condition for a finite number of times and values in U :
1.a Composition of finitely many needle variations.
1.b Defining an approximating cone of the reachable set.
1.c Using a set separation result that gives the transversality condition.
1.d Transporting the maximum condition back in time.
2. By some topological arguments, extend the maximum condition to all U and a.a. $t \in[0, T]$.

References

- Introduction to the mathematical theory of control, by A. Bressan and B. Piccoli.
- Lecture notes in optimal control, by F. Rampazzo.
- Geometry and Optimal Control, by H. Sussmann.
- The Pontryagin Maximum Principle, lecture notes by F. Bonnans.
- An introduction to mathematical control theory, lecture notes by L . Evans.
- The Mathematical Theory of Optimal Processes, by L. Pontryagin and V. Boltyanski and R. Gamkrelidze and E. Michtchenko, 1962.

THANK YOU FOR YOUR ATTENTION.

