
Optimal Bifunctional Catalyst Problem
SADCO Young Researchers Workshop

Daniel Hoehener
Institut de Mathématiques de Jussieu
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THE CHEMICAL ENGINEERING PROBLEM

Setting: The following chemical reaction takes place in a
tubular reactor,

A 1⇐⇒ B 2−→ C,

where the first reaction is reversible and the second is
irreversible. The ratio of substances A, B and C evolves
according to the current ratios and the ratio between the
catalysts 1 and 2.

Goal: Maximize the yield of substance C at exit, when pure
substance A is fed into the reactor.

Control: We control the distribution of catalysts 1 and 2 at each
point along the reactor. Thus, t being the position in the reactor,

u(t) =
amount of catalyst 1

amount of catalyst 1 + amount of catalyst 2
.
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MATHEMATICAL MODEL

Let k1, k2, k3 > 0. T > 0 is the length of the reactor.

Control Constraints: u(t) ∈ U := [0, 1] a.e. in [0,T];

State variables: x(t) = (x1(t), x2(t)) = mole fraction of A and B;

Dynamics: f (x,u) =

(
f1(x,u)
f2(x,u)

)
=

(
u(k2x2 − k1x1)

u(k1x1 − k2x2)− (1− u)k3x2

)
;

Cost: g(x0, xT) = −1 + xT
1 + xT

2 ;

Endpoint Constraints: (x(0), x(T)) ∈ E := {(1, 0)} × R2;

State Constraints: 0 ≤ xi(t) ≤ 1, 0 ≤ x1(t) + x2(t) ≤ 1 for
i ∈ {1, 2} and t ∈ [0,T] 99K h(x(t)) ≤ 0.

Remark.
The mole fraction of C is 1− x1 − x2.
ki are rates of reaction.
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PROBLEM FORMULATION

Minimize g(x(0), x(T)) (P)

over x ∈W1,1([0,T];R2) and u ∈M([0,T];R) satisfying
ẋ(t) = f (t, x(t),u(t)) u(t) ∈ U a.e.
(x(0), x(T)) ∈ E
h(x(t)) ≤ 0 ∀t ∈ [0,T]

Note
Hypotheses of PMP are satisfied.
Assume there exists an optimal solution in the interior of state
constaints. Thus we omit them.
Then, since terminal constraints are absent, the maximum
principle is normal, i.e. λ = 1.
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PONTRYAGIN’S MAXIMUM PRINCIPLE

The Hamiltonian is,
H(x, p,u) = 〈p, f (x,u)〉 = u [(p2 − p1)(k1x1 − k2x2) + p2k3x2]−p2k3x2.

The PMP says that (x̄, ū) is a candidate for a local minimum if
there exists p ∈W1,1([0,T];R2) s.t.

1. −ṗ(t) = Hx(x̄(t), p(t), ū(t)) a.e.

2. (p(0),−p(T)) ∈ ∇g(x̄(0), x̄(T)) + NE(x̄(0), x̄(T))

3. H(x̄(t), p(t), ū(t)) = maxu∈UH(x̄(t), p(t),u) a.e.

2. =⇒ p1(T) = p2(T) = −1.
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The PMP says that (x̄, ū) is a candidate for a local minimum if
there exists p ∈W1,1([0,T];R2) s.t.
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ANALYTICAL SOLUTION I

3. H(x̄(t), p(t), ū(t)) = maxu∈UH(x̄(t), p(t),u) a.e.

IMPLIES

ū(t) = arg max
u∈U

{
− k3p2(t)x̄2(t)

+ u [(p2(t)− p1(t))(k1x̄1(t)− k2x̄2(t)) + k3p2(t)x̄2(t)]︸ ︷︷ ︸
=:J(t)

}
.

Consequently,

J(t) < 0 −→ ū(t) = 0
J(t) > 0 −→ ū(t) = 1
J(t) = 0 −→ singular case
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ANALYTICAL SOLUTION II

2. p(T) = (−1,−1)

IMPLIES

J(T) = −k3x̄2(T) < 0 −→ ū(T) = 0

H(x̄(T), p(T), ū(T)) = k3x̄2(T) > 0

Structure of the end of optimal trajectories
J(·) decreases as t→ T and ū ≡ 0
x̄1(·) is constant on such a segment
x̄2(·) decreases

Interpretation
After some time t0, the reaction A ⇐⇒ B is stopped.
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CONDITIONS WITH SINGULAR SEGMENT

Going backwards in time, J(·) increases until it reaches 0 at
some time t0. Then enters either a singlular segment or
switches to ū ≡ 1. Further, as soon as one switches to ū(t) = 1,
it can be shown that J(·) will never become 0 again.

Conclusion
The solutions are bang-singular-bang or bang-bang.

On a singular segment we have

J ≡ 0 and
dJ
dt

= 0.

Using this and computations, we find that,

ū(t) =
α(1 + α)

β + (1 + α)2 ,

where α :=
√

k3
k2

and β := k1
k2

.
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THE END

Obrigado!


