Optimal Bifunctional Catalyst Problem SADCO Young Researchers Workshop

Daniel Hoehener
Institut de Mathématiques de Jussieu
Université Pierre et Marie Curie, Paris, France

Funchal, January 21-23, 2013

Based on a paper by R. Jaczson

The Chemical Engineering Problem

Setting: The following chemical reaction takes place in a tubular reactor,

$$
A \stackrel{1}{\Longleftrightarrow} B \stackrel{2}{\longrightarrow} C,
$$

where the first reaction is reversible and the second is irreversible. The ratio of substances A, B and C evolves according to the current ratios and the ratio between the catalysts 1 and 2.

The Chemical Engineering Problem

Setting: The following chemical reaction takes place in a tubular reactor,

$$
A \stackrel{1}{\Longleftrightarrow} B \xrightarrow{2} C,
$$

where the first reaction is reversible and the second is irreversible. The ratio of substances A, B and C evolves according to the current ratios and the ratio between the catalysts 1 and 2.

Goal: Maximize the yield of substance C at exit, when pure substance A is fed into the reactor.

The Chemical Engineering Problem

Setting: The following chemical reaction takes place in a tubular reactor,

$$
A \stackrel{1}{\Longleftrightarrow} B \stackrel{2}{\longrightarrow} C,
$$

where the first reaction is reversible and the second is irreversible. The ratio of substances A, B and C evolves according to the current ratios and the ratio between the catalysts 1 and 2.

Goal: Maximize the yield of substance C at exit, when pure substance A is fed into the reactor.

Control: We control the distribution of catalysts 1 and 2 at each point along the reactor. Thus, t being the position in the reactor,

$$
u(t)=\frac{\text { amount of catalyst } 1}{\text { amount of catalyst } 1+\text { amount of catalyst } 2} .
$$

Let $k_{1}, k_{2}, k_{3}>0 . T>0$ is the length of the reactor.

Mathematical Model

Let $k_{1}, k_{2}, k_{3}>0 . T>0$ is the length of the reactor.
Control Constraints: $u(t) \in U:=[0,1]$ a.e. in $[0, T]$;

Mathematical Model

Let $k_{1}, k_{2}, k_{3}>0 . T>0$ is the length of the reactor.
Control Constraints: $u(t) \in U:=[0,1]$ a.e. in $[0, T]$;
State variables: $x(t)=\left(x_{1}(t), x_{2}(t)\right)=$ mole fraction of A and B;

Mathematical Model

Let $k_{1}, k_{2}, k_{3}>0 . T>0$ is the length of the reactor.
Control Constraints: $u(t) \in U:=[0,1]$ a.e. in $[0, T]$;
State variables: $x(t)=\left(x_{1}(t), x_{2}(t)\right)=$ mole fraction of A and B;
Dynamics: $f(x, u)=\binom{f_{1}(x, u)}{f_{2}(x, u)}=\binom{u\left(k_{2} x_{2}-k_{1} x_{1}\right)}{u\left(k_{1} x_{1}-k_{2} x_{2}\right)-(1-u) k_{3} x_{2}}$;

Mathematical Model

Let $k_{1}, k_{2}, k_{3}>0 . T>0$ is the length of the reactor.
Control Constraints: $u(t) \in U:=[0,1]$ a.e. in $[0, T]$;
State variables: $x(t)=\left(x_{1}(t), x_{2}(t)\right)=$ mole fraction of A and B;
Dynamics: $f(x, u)=\binom{f_{1}(x, u)}{f_{2}(x, u)}=\binom{u\left(k_{2} x_{2}-k_{1} x_{1}\right)}{u\left(k_{1} x_{1}-k_{2} x_{2}\right)-(1-u) k_{3} x_{2}}$;
Cost: $g\left(x^{0}, x^{T}\right)=-1+x_{1}^{T}+x_{2}^{T}$;

Mathematical Model

Let $k_{1}, k_{2}, k_{3}>0 . T>0$ is the length of the reactor.
Control Constraints: $u(t) \in U:=[0,1]$ a.e. in $[0, T]$;
State variables: $x(t)=\left(x_{1}(t), x_{2}(t)\right)=$ mole fraction of A and B;
Dynamics: $f(x, u)=\binom{f_{1}(x, u)}{f_{2}(x, u)}=\binom{u\left(k_{2} x_{2}-k_{1} x_{1}\right)}{u\left(k_{1} x_{1}-k_{2} x_{2}\right)-(1-u) k_{3} x_{2}}$;
Cost: $g\left(x^{0}, x^{T}\right)=-1+x_{1}^{T}+x_{2}^{T}$;
Endpoint Constraints: $(x(0), x(T)) \in E:=\{(1,0)\} \times \mathbb{R}^{2}$;

Mathematical Model

Let $k_{1}, k_{2}, k_{3}>0 . T>0$ is the length of the reactor.
Control Constraints: $u(t) \in U:=[0,1]$ a.e. in $[0, T]$;
State variables: $x(t)=\left(x_{1}(t), x_{2}(t)\right)=$ mole fraction of A and B;
Dynamics: $f(x, u)=\binom{f_{1}(x, u)}{f_{2}(x, u)}=\binom{u\left(k_{2} x_{2}-k_{1} x_{1}\right)}{u\left(k_{1} x_{1}-k_{2} x_{2}\right)-(1-u) k_{3} x_{2}}$;
Cost: $g\left(x^{0}, x^{T}\right)=-1+x_{1}^{T}+x_{2}^{T}$;
Endpoint Constraints: $(x(0), x(T)) \in E:=\{(1,0)\} \times \mathbb{R}^{2}$;
State Constraints: $0 \leq x_{i}(t) \leq 1,0 \leq x_{1}(t)+x_{2}(t) \leq 1$ for $i \in\{1,2\}$ and $t \in[0, T] \quad \rightarrow \quad h(x(t)) \leq 0$.

Remark.

The mole fraction of C is $1-x_{1}-x_{2}$.
k_{i} are rates of reaction.

PROBLEM FORMULATION

$$
\begin{equation*}
\text { Minimize } \quad g(x(0), x(T)) \tag{P}
\end{equation*}
$$

over $x \in W^{1,1}\left([0, T] ; \mathbb{R}^{2}\right)$ and $u \in \mathcal{M}([0, T] ; \mathbb{R})$ satisfying

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t), u(t)) \quad u(\\
(x(0), x(T)) \in E \\
h(x(t)) \leq 0 \quad \forall t \in[0, T]
\end{array}\right.
$$

PROBLEM FORMULATION

$$
\begin{equation*}
\text { Minimize } \quad g(x(0), x(T)) \tag{P}
\end{equation*}
$$

over $x \in W^{1,1}\left([0, T] ; \mathbb{R}^{2}\right)$ and $u \in \mathcal{M}([0, T] ; \mathbb{R})$ satisfying

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t), u(t)) \quad u(\\
(x(0), x(T)) \in E \\
h(x(t)) \leq 0 \quad \forall t \in[0, T]
\end{array}\right.
$$

Note
Hypotheses of PMP are satisfied.

PROBLEM FORMULATION

$$
\begin{equation*}
\text { Minimize } \quad g(x(0), x(T)) \tag{P}
\end{equation*}
$$

over $x \in W^{1,1}\left([0, T] ; \mathbb{R}^{2}\right)$ and $u \in \mathcal{M}([0, T] ; \mathbb{R})$ satisfying

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t), u(t)) \quad u(t) \in U \\
(x(0), x(T)) \in E \\
h(x(t)) \leq 0 \quad \forall t \in[0, T]
\end{array}\right.
$$

Note

Hypotheses of PMP are satisfied.
Assume there exists an optimal solution in the interior of state constaints. Thus we omit them.

PROBLEM FORMULATION

$$
\begin{equation*}
\text { Minimize } \quad g(x(0), x(T)) \tag{P}
\end{equation*}
$$

over $x \in W^{1,1}\left([0, T] ; \mathbb{R}^{2}\right)$ and $u \in \mathcal{M}([0, T] ; \mathbb{R})$ satisfying

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t), u(t)) \quad u(t) \in U \\
(x(0), x(T)) \in E
\end{array}\right.
$$

Note

Hypotheses of PMP are satisfied.
Assume there exists an optimal solution in the interior of state constaints. Thus we omit them.
Then, since terminal constraints are absent, the maximum principle is normal, i.e. $\lambda=1$.

Pontryagin's Maximum Principle

The Hamiltonian is,
$\mathcal{H}(x, p, u)=\langle p, f(x, u)\rangle=u\left[\left(p_{2}-p_{1}\right)\left(k_{1} x_{1}-k_{2} x_{2}\right)+p_{2} k_{3} x_{2}\right]-p_{2} k_{3} x_{2}$.

Pontryagin's Maximum Principle

The Hamiltonian is,
$\mathcal{H}(x, p, u)=\langle p, f(x, u)\rangle=u\left[\left(p_{2}-p_{1}\right)\left(k_{1} x_{1}-k_{2} x_{2}\right)+p_{2} k_{3} x_{2}\right]-p_{2} k_{3} x_{2}$.
The PMP says that (\bar{x}, \bar{u}) is a candidate for a local minimum if there exists $p \in W^{1,1}\left([0, T] ; \mathbb{R}^{2}\right)$ s.t.

1. $-\dot{p}(t)=\mathcal{H}_{x}(\bar{x}(t), p(t), \bar{u}(t))$ a.e.

Pontryagin's Maximum Principle

The Hamiltonian is,
$\mathcal{H}(x, p, u)=\langle p, f(x, u)\rangle=u\left[\left(p_{2}-p_{1}\right)\left(k_{1} x_{1}-k_{2} x_{2}\right)+p_{2} k_{3} x_{2}\right]-p_{2} k_{3} x_{2}$.
The PMP says that (\bar{x}, \bar{u}) is a candidate for a local minimum if there exists $p \in W^{1,1}\left([0, T] ; \mathbb{R}^{2}\right)$ s.t.

1. $-\dot{p}(t)=\mathcal{H}_{x}(\bar{x}(t), p(t), \bar{u}(t))$ a.e.
2. $(p(0),-p(T)) \in \nabla g(\bar{x}(0), \bar{x}(T))+N_{E}(\bar{x}(0), \bar{x}(T))$

Pontryagin's Maximum Principle

The Hamiltonian is,
$\mathcal{H}(x, p, u)=\langle p, f(x, u)\rangle=u\left[\left(p_{2}-p_{1}\right)\left(k_{1} x_{1}-k_{2} x_{2}\right)+p_{2} k_{3} x_{2}\right]-p_{2} k_{3} x_{2}$.
The PMP says that (\bar{x}, \bar{u}) is a candidate for a local minimum if there exists $p \in W^{1,1}\left([0, T] ; \mathbb{R}^{2}\right)$ s.t.

1. $-\dot{p}(t)=\mathcal{H}_{x}(\bar{x}(t), p(t), \bar{u}(t))$ a.e.
2. $(p(0),-p(T)) \in \nabla g(\bar{x}(0), \bar{x}(T))+N_{E}(\bar{x}(0), \bar{x}(T))$
3. $\mathcal{H}(\bar{x}(t), p(t), \bar{u}(t))=\max _{u \in U} \mathcal{H}(\bar{x}(t), p(t)$,u) a.e.

Pontryagin's Maximum Principle

The Hamiltonian is,
$\mathcal{H}(x, p, u)=\langle p, f(x, u)\rangle=u\left[\left(p_{2}-p_{1}\right)\left(k_{1} x_{1}-k_{2} x_{2}\right)+p_{2} k_{3} x_{2}\right]-p_{2} k_{3} x_{2}$.
The PMP says that (\bar{x}, \bar{u}) is a candidate for a local minimum if there exists $p \in W^{1,1}\left([0, T] ; \mathbb{R}^{2}\right)$ s.t.

1. $-\dot{p}(t)=\mathcal{H}_{x}(\bar{x}(t), p(t), \bar{u}(t))$ a.e.
2. $(p(0),-p(T)) \in \nabla g(\bar{x}(0), \bar{x}(T))+N_{E}(\bar{x}(0), \bar{x}(T))$
3. $\mathcal{H}(\bar{x}(t), p(t), \bar{u}(t))=\max _{u \in U} \mathcal{H}(\bar{x}(t), p(t)$,u) a.e.

$$
\text { 2. } \Longrightarrow p_{1}(T)=p_{2}(T)=-1 \text {. }
$$

Pontryagin's Maximum Principle

The Hamiltonian is,
$\mathcal{H}(x, p, u)=\langle p, f(x, u)\rangle=u\left[\left(p_{2}-p_{1}\right)\left(k_{1} x_{1}-k_{2} x_{2}\right)+p_{2} k_{3} x_{2}\right]-p_{2} k_{3} x_{2}$.
The PMP says that (\bar{x}, \bar{u}) is a candidate for a local minimum if there exists $p \in W^{1,1}\left([0, T] ; \mathbb{R}^{2}\right)$ s.t.

1. $-\dot{p}(t)=\mathcal{H}_{x}(\bar{x}(t), p(t), \bar{u}(t))$ a.e.
2. $p(T)=(-1,-1)$
3. $\mathcal{H}(\bar{x}(t), p(t), \bar{u}(t))=\max _{u \in U} \mathcal{H}(\bar{x}(t), p(t), u)$ a.e.

Analytical Solution I

3. $\mathcal{H}(\bar{x}(t), p(t), \bar{u}(t))=\max _{u \in U} \mathcal{H}(\bar{x}(t), p(t), u)$ a.e.

IMPLIES

$$
\begin{aligned}
\bar{u}(t)= & \underset{u \in U}{\arg \max }\left\{-k_{3} p_{2}(t) \bar{x}_{2}(t)\right. \\
& +u \underbrace{\left[\left(p_{2}(t)-p_{1}(t)\right)\left(k_{1} \bar{x}_{1}(t)-k_{2} \bar{x}_{2}(t)\right)+k_{3} p_{2}(t) \bar{x}_{2}(t)\right]}_{=: J(t)}\} .
\end{aligned}
$$

Analytical Solution I

3. $\mathcal{H}(\bar{x}(t), p(t), \bar{u}(t))=\max _{u \in U} \mathcal{H}(\bar{x}(t), p(t), u)$ a.e.

IMPLIES

$$
\begin{aligned}
\bar{u}(t)= & \underset{u \in U}{\arg \max }\left\{-k_{3} p_{2}(t) \bar{x}_{2}(t)\right. \\
& +u \underbrace{\left[\left(p_{2}(t)-p_{1}(t)\right)\left(k_{1} \bar{x}_{1}(t)-k_{2} \bar{x}_{2}(t)\right)+k_{3} p_{2}(t) \bar{x}_{2}(t)\right]}_{=: J(t)}\} .
\end{aligned}
$$

Consequently,

$$
\begin{array}{lll}
J(t)<0 & \longrightarrow & \bar{u}(t)=0 \\
J(t)>0 & \longrightarrow & \bar{u}(t)=1 \\
J(t)=0 & \longrightarrow & \text { singular case }
\end{array}
$$

Analytical Solution II

2. $p(T)=(-1,-1)$

IMPLIES

$$
\begin{aligned}
& J(T)=-k_{3} \bar{x}_{2}(T)<0 \quad \longrightarrow \quad \bar{u}(T)=0 \\
& \mathcal{H}(\bar{x}(T), p(T), \bar{u}(T))=k_{3} \bar{x}_{2}(T)>0
\end{aligned}
$$

Structure of the end of optimal trajectories

$J(\cdot)$ decreases as $t \rightarrow T$ and $\bar{u} \equiv 0$
$\bar{x}_{1}(\cdot)$ is constant on such a segment
$\bar{x}_{2}(\cdot)$ decreases

Analytical Solution II

2. $p(T)=(-1,-1)$

IMPLIES

$$
\begin{aligned}
& J(T)=-k_{3} \bar{x}_{2}(T)<0 \quad \longrightarrow \quad \bar{u}(T)=0 \\
& \mathcal{H}(\bar{x}(T), p(T), \bar{u}(T))=k_{3} \bar{x}_{2}(T)>0
\end{aligned}
$$

Structure of the end of optimal trajectories
$J(\cdot)$ decreases as $t \rightarrow T$ and $\bar{u} \equiv 0$
$\bar{x}_{1}(\cdot)$ is constant on such a segment
$\bar{x}_{2}(\cdot)$ decreases
Interpretation
After some time t_{0}, the reaction $A \Longleftrightarrow B$ is stopped.

Conditions with Singular Segment

Going backwards in time, $J(\cdot)$ increases until it reaches 0 at some time t_{0}. Then enters either a singlular segment or switches to $\bar{u} \equiv 1$. Further, as soon as one switches to $\bar{u}(t)=1$, it can be shown that $J(\cdot)$ will never become 0 again.

Conditions with Singular Segment

Going backwards in time, $J(\cdot)$ increases until it reaches 0 at some time t_{0}. Then enters either a singlular segment or switches to $\bar{u} \equiv 1$. Further, as soon as one switches to $\bar{u}(t)=1$, it can be shown that $J(\cdot)$ will never become 0 again.

Conclusion

The solutions are bang-singular-bang or bang-bang.

Conditions with Singular Segment

Going backwards in time, $J(\cdot)$ increases until it reaches 0 at some time t_{0}. Then enters either a singlular segment or switches to $\bar{u} \equiv 1$. Further, as soon as one switches to $\bar{u}(t)=1$, it can be shown that $J(\cdot)$ will never become 0 again.

Conclusion

The solutions are bang-singular-bang or bang-bang.
On a singular segment we have

$$
J \equiv 0 \quad \text { and } \quad \frac{d J}{d t}=0
$$

Conditions with Singular Segment

Going backwards in time, $J(\cdot)$ increases until it reaches 0 at some time t_{0}. Then enters either a singlular segment or switches to $\bar{u} \equiv 1$. Further, as soon as one switches to $\bar{u}(t)=1$, it can be shown that $J(\cdot)$ will never become 0 again.

Conclusion

The solutions are bang-singular-bang or bang-bang.
On a singular segment we have

$$
J \equiv 0 \quad \text { and } \quad \frac{d J}{d t}=0
$$

Using this and computations, we find that,

$$
\bar{u}(t)=\frac{\alpha(1+\alpha)}{\beta+(1+\alpha)^{2}},
$$

where $\alpha:=\sqrt{\frac{k_{3}}{k_{2}}}$ and $\beta:=\frac{k_{1}}{k_{2}}$.

Obrigado!

