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A bit of history...

The term ”Relaxation”

was conied by J. Warga

in the early 60’s. In

his monography, ”Opti-

mal Control of Funcional

and Differential Equa-

tions”, relaxation is in-

vestigated and used in

several kinds of optimal

control problems.
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Original Control Problem
Suppose we are considering the following problem:

(P )



minimize g(x(1))
over the absolutely continuos arcs x(·)
and the measurable control functions u(·) s.t.
ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0,1]
u(t) ∈ U(t) a.e. t ∈ [0,1]
(x(0), x(1)) ∈ C0 × C1

We refer to (P ) as original problem, to u(·) as original

control function and to the couple (x(·), u(·)) as original

process.

2



Existence of a Minimizer

(H1) : f(., x, u) is measurable and f(t, ., .) is continuous.
U(.) is a measurable multifunction taking values
compact sets. C1×C2 is closed and or C1 either C2
is bounded.

(H2) : There exist ε > 0, k(.) ∈ L1 and c(.) ∈ L1 such that

|f(t, x, u)−f(t, x′, u)| ≤ k(t)|x−x′| and |f(t, x, u)| ≤ c(t)
for all x, x′ ∈ Rn, u ∈ U(t), a.e. t ∈ [0,1].

Theorem: Suppose that hypotheses (H1) and (H2) are
satisfied. Assume furthermore that the set f(t, x, U(t))
is convex for all x. Then (P ) has a minimizer.
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Warga’s Relaxation
His approach consists in considering the new integral

equation

ẋ(t) =
∫

U(t)

f(t, x(t), r)µ(t)(dr) a.e. t ∈ [0,1],

where

µ(·) : [0,1]→ r.p.m.(U(·)) :=

= {(Radon) probability measure on U(·)},

which replaces the controlled differential equation in

(P ).

We refer to µ(·) as relaxed control function and to

(x(·), µ(·)) as relaxed process.
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Another Approach: Convexification

(P )rel



minimize g(x(1))
over the absolutely continuos arcs x(·),
the measurable control functions (u0(·), . . . , un(·)) and
the measurable vector functions (λ0(·), . . . , λn(·)) s.t.
ẋ(t) =

∑n
j=0 λj(t)f(t, x(t), uj(t)) a.e. t ∈ [0,1]

(u0(t), . . . , un(t)) ∈ Un+1(t), a.e. t ∈ [0,1]
(λ0(t), . . . , λn(t)) ∈ Λ, a.e. t ∈ [0,1]
(x(0), x(1)) ∈ C0 × C1

where

Λ := {(λ0, . . . , λn) ∈ Rn+1 : λi ≥ 0 ∀i,
n∑
i=0

λi = 1}.

In this case, the triple
(
x(·), {λi(·), ui(·)}nk=0

)
is a relaxed

process.

5



Equivalence of the formulations
i) Warga’s approach =⇒ Convexification approach

If we choose a probability measure t→ µ(t) with support

supp{µ}(t) = {u0, . . . , un}(t) a.e. t ∈ [0,1]

and we define

µ{uj}(t) := λj(t) a.e. t ∈ [0,1],

then it follows that∫
U(t)

f(t, x(t), r)µ(t)(dr) =
n∑

j=0

λj(t)f(t, x(t), uj(t)).
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ii) Convexification Approach =⇒ Warga’s Approach

Consider the set

co {f(t, x, U(t))}

and define

a(t) :=
∫

U(t)

f(t, x, r)µ(t)(dr).

If we suppose that

a(t) /∈ co {f(t, x, U(t))} ,

then there exists an r > 0 s.t.

Br(a(t)) ∩ co {f(t, x, U(t))} = ∅

and from the Separation Theorem:
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there exists p(t) 6= 0 s.t.

p(t) · d(t) ≤ p(t) · y(t)

for any d(t) ∈ Br(a(t)), y(t) ∈ co {f(t, x, U(t))} .

Superior extremum on the l.h.s. plus y(t) = f(t, x, u(t))
give:

p(t) · a(t) + r|p(t)| ≤ p(t) · f(t, x, u(t)).

Then we integrate both sides

p(t) · a(t) + r|p(t)| ≤
∫

U(t)

p(t) · f(t, x, r)µ(t)(dr) =

= p(t) ·
∫

U(t)

f(t, x, r)µ(t)(dr) = p(t) · a(t),

CONTRADICTION!!!
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Relaxation Theorem
Define the original Reachable set

R := {x(1) : ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U(t)a.e.t ∈ [0,1]},

and the relaxed Reachable set

S := {x(1) : ẋ(t) =
∫

U(t)

f(t, x(t), r)µ(t)(dr),

µ(t) ∈ r.p.m.(U(t)) a.e. t ∈ [0,1]}.

If we assume hypotheses (H1) and (H2), it follows that

R̄ = S.
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An Example
Consider the problem:

(E)


minimize J(x) :=

∫ 1
0 |x(t)|dt

ẋ(t) = u(t) a.e. t ∈ [0,1]
u(t) ∈ {−1,+1} a.e. t ∈ [0,1]
x(0) = 0

.

Consider the sequence of arcs xi(·) related to the se-

quence of control function

ui(s) =

{
+1 for s ∈ Ai ∩ [0,1]
−1 for s /∈ Ai ∩ [0,1]

,

where

Ai =
∞⋃
j=0

[
2j

2i
,
(2j + 1)

2i

]
.
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It turns out that

J(xi) =

1∫
0

dt

∣∣∣∣∣∣∣
t∫

0

ui(s)ds

∣∣∣∣∣∣∣ ≤
1

2i
,

which means that

inf
(E)

J(x) = 0.

If (x̄(·), ū(·)) is a minimizer s.t. J(x̄) =
∫ 1
0 |x̄(t)|dt = 0,

=⇒

x̄(t) = 0 and ˙̄x(t) = ū(t) = 0 a.e. t ∈ [0,1].

CONTRADICTION!!!

11



Question
In general we have:

inf
(P )

g(x(1)) ≥ inf
(Prel)

g(x(1))

When does the equivalence occur?

inf
(P )

g(x(1)) = inf
(Prel)

g(x(1))

Answer: When the minimizer x̄(·) is not a boundary

point of the constraint, which means

or x̄(0) + εB ⊂ C0, either x̄(1) + εB ⊂ C1.
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