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Active vibration control of slender structures

∂2
xx (EI∂

2
xxw) = −µ∂2

ttw + q(x )



Active noise cancellation



Pollution propagation

∂tci +∇ · (u ci)−∇ · (K∇ci) = Ri(c1, . . . , cd ) + Si



Molecular dynamics

∂2
ttx = −∇φ(x)
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Our“Ultimate Goal”

Is it possible to recover an optimal controller of lower complexity, computed from
an approximate model that mimics the I-O behavior of the original system?
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Reachability and Observability

Consider a system described in state-space form
∑

=
∑

(A,B, C).

Let hr (t) = eAtB be the I-S response.

Let ho(t) = CeAt be the S-O response.

Reachability gramian

Given P =
∫∞

0 hr (t)h
T
r (t)dt The smallest amount of energy to move the system

from 0 to x is ǫr = xTP−1x .

Observability gramian

Given Q =
∫∞

0
hT
o (t)ho(t)dt The amount of observed energy from a free system

with initial condition x is ǫo = xTQx .
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Balancing

Assuming that S (A,B, C) is exponentially stabilizable and detectable,

Lyapunov equations and balanced realization

The reachability and controlability gramians are the unique, self-adjoint positive
semidefinite solutions P and Q that satisfy the following Lyapunov equations

AP + PAT + BBT = 0,

ATQ+QA+ CTC = 0,

We look for a balancing transformation such that

P = Q = Σ = diag(σj )

.



Solution method

We determine the Cholesky factors R and L of the Gramians, i.e.

P = RRT , Q = LLT .

Further, we compute the singular value decomposition

LTR = (U1 U2)

(

Σ1 0
0 Σ2

)(

V1

V2

)

with orthonormal matrices U = (U1 U2) and V = (V1 V2)
T and diagonal

matrices
Σ1 = diag(σ1, . . . , σr ), Σ2 = diag(σr+1, . . . , σl )

with
σ1 ≥ · · · ≥ σr ≫ σr+1 ≥ · · · ≥ σl > 0

and l = rank(LTR).



Truncation

The singular values of LTR provide a measure of the energy of the corresponding
balanced state. By setting

W = LU1Σ
− 1

2

1 , S = RV1Σ
− 1

2

1

we can compute

Ar = W TAS , Br = STB, Cr = CW

Reduced-order model










∂ty
r = Aryr + Bru,

yr (0) = W Tx ,

z r = Cryr

Error bound

‖z r − z‖L2(0,∞) ≤ 2(σr+1 + · · ·+ σl ) ‖u‖L2(0,∞) .



Balancing

Balancing alternative

We compute the Cholesky factor U of P and the eigenvalue decomposition of
U ∗QU :

P = UU ∗, U ∗QU = KΣ2K ∗

There exists then a balancing transformation given by T = Σ1/2K ∗U−1 and
T−1 = UKΣ−1/2.
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Design steps

Finite element discretization

Model reduction

HJB

PDE



Numerical approximation

Numerical tests:

Wave equation. Distributed control operator.

Observation operator Cx =
∫

Ωobs
x (:, t)dξ

Procedures:

1 FEM-ROMBT-IO (step).

2 FEM-ROMBT-LQR.



Hankel singular values
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Recovered ROM dynamics (4 states)



FEM and ROM observations (4 states)
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FEM and ROM LQR and free outputs (4 states)
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